Skip to main content

Advertisement

Log in

Imaging Advances on CT and MRI in Colorectal Cancer

  • Diagnostic and Interventional Radiology Innovations in Colorectal Cancer (S Saha, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of Review

Colorectal cancer (CRC) is the most common gastrointestinal neoplasm. Imaging plays a key role in the primary diagnosis, risk stratification and prognosis, therapy planning, treatment response assessment, follow-up, and, to some extent, also in prevention of CRC. The most used imaging modalities for the evaluation of these tumours are computed tomography (CT) and magnetic resonance imaging (MRI). We review the literature and, drawed on our own experience, evaluate recent innovations in hardware, software (including artificial intelligence), and analytic tools that are opening new possibilities to CT and MRI imaging in CRC. Finally, we examine the advantages and disadvantages of these techniques.

Recent Findings

Advances in CT technology have improved image quality and reduced radiation exposure to patients and have allowed a paradigm shift from an imaging modality that provided solely anatomical data to one that can also provide functional information. In addition, technological improvements in MRI have made possible a faster and more robust imaging technique and the generation of new data of tumour phenotype. All these advances have expanded the clinical capabilities of these techniques in colorectal tumours.

Summary

Recent developments and emerging technologies in CT and MRI are changing the management of CRC patients in many clinical scenarios. Current evidence supports the clinical application of many of them. In other cases, such as quantitative imaging, multiparametric assessment, and radiomics/radiogenomics, important problems of standardization and reproducibility of these techniques persist that limit their introduction in daily clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

Data transparency is guaranteed.

We declare that all authors whose names appear on the submission (1) made substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the submitted version; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. López-Campos F, Martín-Martín M, Fornell-Pérez R, García-Pérez JC, Die-Trill J, Fuentes-Mateos R, et al. Watch and wait approach in rectal cancer: current controversies and future directions. World J Gastroenterol. 2020;26:4218–39. https://doi.org/10.3748/wjg.v26.i29.4218.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Santiago I, Rodrigues B, Barata M, Figueiredo N, Fernandez L, Galzerano A, et al. Re-staging and follow-up of rectal cancer patients with MR imaging when “Watch-and-Wait” is an option: a practical guide. Insights Imaging. 2021;12:114. https://doi.org/10.1186/s13244-021-01055-w.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kasi A, Abbasi S, Handa S, Al-Rajabi R, Saeed A, Baranda J, et al. Total neoadjuvant therapy vs standard therapy in locally advanced rectal cancer: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(12): e2030097. https://doi.org/10.1001/jamanetworkopen.2020.30097.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhoday J, Balyasnikova S, Wale A, Brown G. How should imaging direct/orient management of rectal cancer? Clin Colon Rectal Surg. 2017;30:297–312. https://doi.org/10.1055/s-0037-1606107.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Santiago I, Figueiredo N, Parés O, Matos C. MRI of rectal cancer-relevant anatomy and staging key points. Insights Imaging. 2020;11:100. https://doi.org/10.1186/s13244-020-00890-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Krdzalic J, Maas M, Gollub MJ, Beets-Tan RGH. Guidelines for MR imaging in rectal cancer: Europe versus United States. Abdom Radiol (NY). 2019;44:3498–507. doi: https://doi.org/10.1007/s00261-019-02251-5. An important paper comparing American and European guidelines and protocols for rectal MRI, which improve imaging quality and reporting standardization.

  8. Nerad E, Lambregts DM, Kersten EL, Maas M, Bakers FC, van den Bosch HC, et al. MRI for local staging of colon cancer: can MRI become the optimal staging modality for patients with colon cancer? Dis Colon Rectum. 2017;60:385–92. https://doi.org/10.1097/DCR.0000000000000794.

    Article  PubMed  Google Scholar 

  9. Laghi A. CT colonography: an update on current and future indications. Expert Rev Gastroenterol Hepatol. 2016;10:785–94. https://doi.org/10.1586/17474124.2016.1143358.

    Article  CAS  PubMed  Google Scholar 

  10. Mainenti PP, Stanzione A, Guarino S, Romeo V, Ugga L, Romano F, et al. Colorectal cancer: parametric evaluation of morphological, functional and molecular tomographic imaging. World J Gastroenterol. 2019;25:5233–56. https://doi.org/10.3748/wjg.v25.i35.5233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. •• García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Marhuenda A, Vilanova JC, et al. Advanced imaging techniques in evaluation of colorectal cancer. Radiographics. 2018;38:740–65. doi: https://doi.org/10.1148/rg.2018170044. This paper represents the most detailed and up-to-date review of the role of advanced imaging techniques in colorectal tumours.

  12. Hsieh J, Flohr T. Computed tomography recent history and future perspectives. J Med Imaging (Bellingham). 2021;8: 052109. https://doi.org/10.1117/1.JMI.8.5.052109.

    Article  Google Scholar 

  13. Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185–95. https://doi.org/10.1007/s00330-018-5810-7.

    Article  PubMed  Google Scholar 

  14. Zhang Q, Eagleson R, Peters TM. Volume visualization: a technical overview with a focus on medical applications. J Digit Imaging. 2011;24:640–4. https://doi.org/10.1007/s10278-010-9321-6.

    Article  PubMed  Google Scholar 

  15. Planz VB, Lubner MG, Pickhardt PJ. Volumetric analysis at abdominal CT: oncologic and non-oncologic applications. Br J Radiol. 2019;92:20180631. https://doi.org/10.1259/bjr.20180631.

    Article  PubMed  Google Scholar 

  16. Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H. Cinematic rendering - an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7:849–56. https://doi.org/10.1007/s13244-016-0518-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Spada C, Hassan C, Bellini D, Burling D, Cappello G, Carretero C, et al. Imaging alternatives to colonoscopy: CT colonography and colon capsule. European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastrointestinal and Abdominal Radiology (ESGAR) Guideline - Update 2020. Eur Radiol. 2021;31:2967–82. doi: https://doi.org/10.1007/s00330-020-07413-4. A consensus that establish clinical scenarios for the use of alternative techniques to optical colonoscopy.

  18. Yee J, Chang KJ, Dachman AH, Kim DH, McFarland EG, Pickhardt PJ, et al. The added value of the CT colonography reporting and data system. J Am Coll Radiol. 2016;13:931–5. https://doi.org/10.1016/j.jacr.2016.04.031.

    Article  PubMed  Google Scholar 

  19. Bates DDB, Paroder V, Lall C, Lalwani N, Widmar M, Garcia-Aguilar J. Complete mesocolic excision and central vascular ligation for right colon cancer: an introduction for abdominal radiologists. Abdom Radiol (NY). 2019;44:3518–26. https://doi.org/10.1007/s00261-019-02037-9.

    Article  Google Scholar 

  20. Nepal P, Mori S, Kita Y, Tanabe K, Baba K, Sasaki K, et al. Anatomical study of the inferior mesenteric vein using three-dimensional computed tomography angiography in laparoscopy-assisted surgery for left-sided colorectal cancer. Surg Today. 2021. https://doi.org/10.1007/s00595-021-02292-8. Online ahead of print.

  21. Park JY, Kim SH, Lee SM, Lee JS, Han JK. CT volumetric measurement of colorectal cancer helps predict tumor staging and prognosis. PLoS One. 2017;12:e0178522. https://doi.org/10.1371/journal.pone.0178522. eCollection 2017.

  22. Lim MC, Tan CH, Cai J, Zheng J, Kow AW. CT volumetry of the liver: where does it stand in clinical practice? Clin Radiol. 2014;69:887–95. https://doi.org/10.1016/j.crad.2013.12.021.

    Article  CAS  PubMed  Google Scholar 

  23. Zimmermann M, Kuhl CK, Engelke H, Bettermann G, Keil S. CT-based whole-body tumor volumetry versus RECIST 1.1: feasibility and implications for inter-reader variability. Eur J Radiol. 2021;135:109514. https://doi.org/10.1016/j.ejrad.2020.109514.

  24. Rothe JH, Grieser C, Lehmkuhl L, Schnapauff D, Fernandez CP, Maurer MH, et al. Size determination and response assessment of liver metastases with computed tomography–comparison of RECIST and volumetric algorithms. Eur J Radiol. 2013;82:1831–9. https://doi.org/10.1016/j.ejrad.2012.05.018.

    Article  PubMed  Google Scholar 

  25. • Winter KS, Hofmann FO, Thierfelder KM, Holch JW, Hesse N, Baumann AB, et al. Towards volumetric thresholds in RECIST 1.1: therapeutic response assessment in hepatic metastases. Eur Radiol. 2018;28:4839–48. doi: https://doi.org/10.1007/s00330-018-5424-0. A study that demonstrates the possibility of using volumetric measurements instead of the classic value of the largest diameter of the lesions (RECIST) in the assessment of response of colorectal cancer. Volumetric measurements represent more accurately tumour burden.

  26. Rowe SP, Chu LC, Fishman EK. Computed tomography cinematic rendering in the evaluation of colonic pathology: technique and clinical applications. J Comput Assist Tomogr. 2019;43:475–84. https://doi.org/10.1097/RCT.0000000000000864.

    Article  PubMed  Google Scholar 

  27. Srinivasan S. Dual-energy CT in colorectal cancers: beyond the density measurements. Diagn Interv Radiol. 2017;23:479–80. https://doi.org/10.5152/dir.2017.17287.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun K, Han R, Han Y, Shi X, Hu J, Lu B. Accuracy of combined computed tomography colonography and dual energy iiodine map imaging for detecting colorectal masses using high-pitch dual-source CT. Sci Rep. 2018;8:3790. https://doi.org/10.1038/s41598-018-22188-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Najami I, Mahmoud Sheta H, Baatrup G. Differentiation between malignant and benign rectal tumors by dual-energy computed tomography - a feasibility study. Acta Oncol. 2019;58(sup1):S55–9. https://doi.org/10.1080/0284186X.2019.1574404.

    Article  PubMed  Google Scholar 

  30. Chuang-Bo Y, Tai-Ping H, Hai-Feng D, et al. Quantitative assessment of the degree of differentiation in colon cancer with dual-energy spectral CT. Abdom Radiol (NY). 2017;42:2591–6. https://doi.org/10.1007/s00261-017-1176-6.41.

    Article  Google Scholar 

  31. Gong HX, Zhang KB, Wu LM, et al. Dual energy spectral CT imaging for colorectal cancer grading: a preliminary study. PLoS ONE. 2016;11: e0147756. https://doi.org/10.1371/journal.pone.0147756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu J, Lv Y, Wang N, et al. The value of single-source dual-energy CT imaging for discriminating microsatellite instability from microsatellite stability human colorectal cancer. Eur Radiol. 2019;29:3782–90. https://doi.org/10.1007/s00330-019-06144-5.

    Article  PubMed  Google Scholar 

  33. Cao Y, Zhang G, Bao H, Zhang S, Zhang J, Zhao Z, et al. Development of a dual-energy spectral CT based nomogram for the preoperative discrimination of mutated and wild-type KRAS in patients with colorectal cancer. Clin Imaging. 2021;69:205–12. https://doi.org/10.1016/j.clinimag.2020.08.023.

    Article  PubMed  Google Scholar 

  34. Fan S, Li X, Zheng L, Hu D, Ren X, Ye Z. Correlations between the iodine concentrations from dual energy computed tomography and molecular markers Ki-67 and HIF-1α in rectal cancer: a preliminary study. Eur J Radiol. 2017;96:109–14. https://doi.org/10.1016/j.ejrad.2017.08.026.

    Article  PubMed  Google Scholar 

  35. Kang HJ, Kim SH, Bae JS, Jeon SK, Han JK. Can quantitative iodine parameters on DECT replace perfusion CT parameters in colorectal cancers? Eur Radiol. 2018;28:4775–82. https://doi.org/10.1007/s00330-018-5502-3.

    Article  PubMed  Google Scholar 

  36. Kato T, Uehara K, Ishigaki S, Nihashi T, Arimoto A, Nakamura H, et al. Clinical significance of dual-energy CT-derived iodine quantification in the diagnosis of metastatic LN in colorectal cancer. Eur J Surg Oncol. 2015;41:1464–70.

    Article  CAS  Google Scholar 

  37. Yang Z, Zhang X, Fang M, Li G, Duan X, Mao J, et al. Preoperative diagnosis of regional lymph node metastasis of colorectal cancer with quantitative parameters from dual-energy CT. AJR Am J Roentgenol. 2019;213:W17-25. https://doi.org/10.2214/AJR.18.20843.

    Article  PubMed  Google Scholar 

  38. Liu H, Yan F, Pan Z, et al. Evaluation of dual energy spectral CT in differentiating metastatic from non-metastatic lymph nodes in rectal cancer: initial experience. Eur J Radiol. 2015;84:228–34.

    Article  Google Scholar 

  39. Al-Najami I, Drue HC, Steele R, Baatrup G. DECT - a possible new method to assess regression of rectal cancers after neoadjuvant treatment. J Surg Oncol. 2017;116:984–8.

    Article  CAS  Google Scholar 

  40. Sauter AP, Kössinger A, Beck S, Deniffel D, Dapper H, Combs SE, et al. Dual-energy CT parameters in correlation to MRI-based apparent diffusion coefficient: evaluation in rectal cancer after radiochemotherapy. Acta Radiol Open. 2020;9:2058460120945316. https://doi.org/10.1177/2058460120945316.

    Article  PubMed  PubMed Central  Google Scholar 

  41. García-Figueiras R, Goh VJ, Padhani AR, Baleato-González S, Garrido M, León L, et al. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200:8–19. https://doi.org/10.2214/AJR.11.8476.

    Article  PubMed  Google Scholar 

  42. Goh V, Glynne-Jones R. Perfusion CT imaging of colorectal cancer. Br J Radiol. 2014;87:20130811. https://doi.org/10.1259/bjr.20130811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muenzel D, Bar-Ness D, Roessl E, Blevis I, Bartels M, Fingerle AA, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology. 2017;283:723–8. https://doi.org/10.1148/radiol.2016160890.

    Article  PubMed  Google Scholar 

  44. • Thivolet A, Si-Mohamed S, Bonnot PE, Blanchet C, Képénékian V, Boussel L, et al. Spectral photon-counting CT imaging of colorectal peritoneal metastases: initial experience in rats. Sci Rep. 2020;10:13394. doi: https://doi.org/10.1038/s41598-020-70282-w. A preliminary study in animal models that shows the ability of photon-counting CT to use and assess multiple contrast media at the same time imaging colorectal tumours. This advanced technique under research may revolutionize CT imaging.

  45. • Gollub MJ, Lall C, Lalwani N, Rosenthal MH. Current controversy, confusion, and imprecision in the use and interpretation of rectal MRI. Abdom Radiol (NY). 2019;44:3549–58. doi: https://doi.org/10.1007/s00261-019-01996-3. A paper that clarifies key points that need to be considered when reporting MR exams of rectal cancer, including confusing nomenclature, prognostic features, and anatomical landmarks.

  46. Yoon JH, Nickel MD, Peeters JM, Lee JM. Rapid imaging: recent advances in abdominal MRI for reducing acquisition time and its clinical applications. Korean J Radiol. 2019;20:1597–615. https://doi.org/10.3348/kjr.2018.0931.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chan WY, Hartono S, Thng CH, Koh DM. New advances in magnetic resonance techniques in abdomen and pelvis. Magn Reson Imaging Clin N Am. 2020;28:433–45. https://doi.org/10.1016/j.mric.2020.04.001.

    Article  PubMed  Google Scholar 

  48. Ream JM, Rosenkrantz AB. Advances in T1-weighted and T2-weighted imaging in the abdomen and pelvis. Radiol Clin North Am. 2015;53:583–98. https://doi.org/10.1016/j.rcl.2015.01.003.

    Article  PubMed  Google Scholar 

  49. Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imaging. 2017;45:966–87. https://doi.org/10.1002/jmri.25547.

    Article  PubMed  Google Scholar 

  50. Park JH, Seo N, Lim JS, Hahm J, Kim MJ. Feasibility of simultaneous multislice acceleration technique in diffusion-weighted magnetic resonance imaging of the rectum. Korean J Radiol. 2020;21:77–87. https://doi.org/10.3348/kjr.2019.0406.

    Article  PubMed  Google Scholar 

  51. Haak HE, Maas M, Trebeschi S, Beets-Tan RGH. Modern MR imaging technology in rectal cancer; there is more than meets the eye. Front Oncol. 2020;10:537532. https://doi.org/10.3389/fonc.2020.537532. eCollection 2020.

  52. Canellas R, Rosenkrantz AB, Taouli B, Sala E, Saini S, Pedrosa I, et al. Abbreviated MRI protocols for the abdomen. Radiographics. 2019;39:744–58. https://doi.org/10.1148/rg.2019180123.

    Article  PubMed  Google Scholar 

  53. Lee SL, Shin YR, Kim K. The added value of pelvic surveillance by MRI during postoperative follow-up of rectal cancer, with a focus on abbreviated MRI. Eur Radiol. 2020;30:3113–24. https://doi.org/10.1007/s00330-020-06711-1 (Epub 2020 Feb 18).

    Article  PubMed  Google Scholar 

  54. Granata V, Fusco R, Avallone A, Cassata A, Palaia R, Delrio P, et al. Abbreviated MRI protocol for colorectal liver metastases: how the radiologist could work in pre surgical setting. PLoS One. 2020;15:e0241431. https://doi.org/10.1371/journal.pone.0241431. eCollection 2020.

  55. Lim KK, Noe G, Hornsey E, Lim RP. Clinical applications of 3D T2-weighted MRI in pelvic imaging. Abdom Imaging. 2014;39:1052–62. https://doi.org/10.1007/s00261-014-0124-y.

    Article  PubMed  Google Scholar 

  56. Kim H, Lim JS, Choi JY, Park J, Chung YE, Kim MJ, et al. Rectal cancer: comparison of accuracy of local-regional staging with two- and three-dimensional preoperative 3-T MR imaging. Radiology. 2010;254:485–92. https://doi.org/10.1148/radiol.09090587.

    Article  PubMed  Google Scholar 

  57. Cao W, Lian Y, Liu D, Li F, Zhu P, Zhou Z. Rectal cancer restaging using 3D CUBE vs. 2D T2- weighted technique after neoadjuvant therapy: a diagnostic study. Gastroenterol Rep (Oxf). 2017;5:226–31. https://doi.org/10.1093/gastro/gow039.

  58. Gormly K. Rectal MRI: the importance of high resolution T2 technique. Abdom Radiol (NY). 2021;46(9):4090–5. https://doi.org/10.1007/s00261-021-03047-2.

    Article  Google Scholar 

  59. Fütterer JJ, Yakar D, Strijk SP, Barentsz JO. Preoperative 3 T MR imaging of rectal cancer: local staging accuracy using a two-dimensional and three- dimensional T2-weighted turbo spin echo sequence. Eur J Radiol. 2008;65:66–71. https://doi.org/10.1016/j.ejrad.2007.11.029.

    Article  PubMed  Google Scholar 

  60. Zhao L, Liang M, Shi Z, Xie L, Zhang H, Zhao X. Preoperative volumetric synthetic magnetic resonance imaging of the primary tumor for a more accurate prediction of lymph node metastasis in rectal cancer. Quant Imaging Med Surg. 2021;11:1805–16. https://doi.org/10.21037/qims-20-659.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao L, Liang M, Xie L, Yang Y, Zhang H, Zhao X. Prediction of pathological prognostic factors of rectal cancer by relaxation maps from synthetic magnetic resonance imaging. Eur J Radiol. 2021 May;138: 109658. https://doi.org/10.1016/j.ejrad.2021.109658.

    Article  PubMed  Google Scholar 

  62. Ge YX, Hu SD, Wang Z, Guan RP, Zhou XY, Gao QZ, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer. Eur Radiol. 2021;31:3347–54. https://doi.org/10.1007/s00330-020-07359-7.

    Article  PubMed  Google Scholar 

  63. Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279:278–86. https://doi.org/10.1148/radiol.2016152037.

    Article  PubMed  Google Scholar 

  64. Zhao L, Liang M, Wu PY, Yang Y, Zhang H, Zhao X. A preliminary study of synthetic magnetic resonance imaging in rectal cancer: imaging quality and preoperative assessment. Insights Imaging. 2021;12(1):120. https://doi.org/10.1186/s13244-021-01063-w.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhao L, Liang M, Xie L, Yang Y, Zhang H, Zhao X. Prediction of pathological prognostic factors of rectal cancer by relaxation maps from synthetic magnetic resonance imaging. Eur J Radiol. 2021;138: 109658. https://doi.org/10.1016/j.ejrad.2021.109658.

    Article  PubMed  Google Scholar 

  66. Tang L, Zhou XJ. Diffusion MRI of cancer: from low to high b-values. J Magn Reson Imaging. 2019;49:23–40. https://doi.org/10.1002/jmri.26293.

    Article  PubMed  Google Scholar 

  67. Prezzi D, Goh V. Rectal cancer magnetic resonance imaging: imaging beyond morphology. Clin Oncol (R Coll Radiol). 2016;28:83–92. https://doi.org/10.1016/j.clon.2015.10.010.

    Article  CAS  Google Scholar 

  68. Gürses B, Böge M, Altınmakas E, Balık E. Multiparametric MRI in rectal cancer. Diagn Interv Radiol. 2019;25:175–82. https://doi.org/10.5152/dir.2019.18189.

    Article  PubMed  Google Scholar 

  69. •• Pham TT, Liney GP, Wong K, Barton MB. Functional MRI for quantitative treatment response prediction in locally advanced rectal cancer. Br J Radiol. 2017;90:20151078. doi: https://doi.org/10.1259/bjr.20151078. This paper highlights the promising role of DWI and DCE-MRI and multiparametric imaging in the assessment of pathological response in rectal cancer, but also remarks that these techniques currently lack sufficient accuracy and standardization to be routinely used to change clinical patient management.

  70. Schurink NW, Lambregts DMJ, Beets-Tan RGH. Diffusion-weighted imaging in rectal cancer: current applications and future perspectives. Br J Radiol. 2019;92:20180655. https://doi.org/10.1259/bjr.20180655. An excellent paper that covers all the clinical applications of diffusion-weighted imaging in rectal cancer with a complete review of the published literature.

  71. Nguyen TL, Soyer P, Fornès P, Rousset P, Kianmanesh R, Hoeffel C. Diffusion-weighted MR imaging of the rectum: clinical applications. Crit Rev Oncol Hematol. 2014;92:279–95. https://doi.org/10.1016/j.critrevonc.2014.07.002.

    Article  PubMed  Google Scholar 

  72. Jia H, Ma X, Zhao Y, Zhao J, Liu R, Chen Z, et al. Meta-analysis of diffusion-weighted magnetic resonance imaging in identification of colorectal cancer. Int J Clin Exp Med. 2015;8:17333–42. eCollection 2015.

  73. Lambregts DMJ, Boellaard TN, Beets-Tan RGH. Response evaluation after neoadjuvant treatment for rectal cancer using modern MR imaging: a pictorial review. Insights Imaging. 2019;10:15. https://doi.org/10.1186/s13244-019-0706-x.

    Article  PubMed  PubMed Central  Google Scholar 

  74. van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269:101–12. https://doi.org/10.1148/radiol.13122833.

    Article  PubMed  Google Scholar 

  75. Taylor SA, Mallett S, Beare S, Bhatnagar G, Blunt D, Boavida P, et al; Streamline investigators. Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed colorectal cancer: the prospective Streamline C trial. Lancet Gastroenterol Hepatol. 2019;4:529–37. https://doi.org/10.1016/S2468-1253(19)30056-1.

  76. Le Bihan D. What can we see with IVIM MRI? Neuroimage. 2019;187:56–67. https://doi.org/10.1016/j.neuroimage.2017.12.062.

    Article  PubMed  Google Scholar 

  77. Surov A, Meyer HJ, Höhn AK, Behrmann C, Wienke A, Spielmann RP, et al. Correlations between intravoxel incoherent motion (IVIM) parameters and histological findings in rectal cancer: preliminary results. Oncotarget. 2017;8:21974–83. https://doi.org/10.18632/oncotarget.15753.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Granata V, Fusco R, Reginelli A, Delrio P, Selvaggi F, Grassi R, et al. Diffusion kurtosis imaging in patients with locally advanced rectal cancer: current status and future perspectives. J Int Med Res. 2019;47:2351–60. https://doi.org/10.1177/0300060519827168.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M. Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol. 2017;95:155–68. https://doi.org/10.1016/j.ejrad.2017.08.009.

    Article  PubMed  Google Scholar 

  80. Lord A, D’Souza N, Shaw A, Day N, Brown G. The current status of nodal staging in rectal cancer. Curr Colorectal Cancer Rep. 2019;15:143–8. https://doi.org/10.1007/s11888-019-00441-3.

    Article  Google Scholar 

  81. Elsholtz FHJ, Asbach P, Haas M, Becker M, Beets-Tan RGH, Thoeny HC, et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur Radiol. 2021. https://doi.org/10.1007/s00330-020-07572-4. Online ahead of print.

  82. Hong EK, Landolfi F, Castagnoli F, Park SJ, Boot J, Van den Berg J, et al. CT for lymph node staging of colon cancer: not only size but also location and number of lymph node count. Abdom Radiol (NY). 2021;46:4096–105. https://doi.org/10.1007/s00261-021-03057-0.

    Article  Google Scholar 

  83. • Stijns RCH, Philips BWJ, Nagtegaal ID, Polat F, de Wilt JHW, Wauters CAP, et al. USPIO-enhanced MRI of lymph nodes in rectal cancer: a node-to-node comparison with histopathology. Eur J Radiol. 2021;138:109636. https://doi.org/10.1016/j.ejrad.2021.109636. An important study that shows the limitations of imaging in the characterization of LNs in rectal cancer. Despite the hopes placed on the USPIO, a lymphotrophic contrast-agent, this study demonstrates that USPIO-enhanced MRI is not accurate for characterizing small benign versus small tumoural lymph nodes in rectal cancer patients.

  84. Khwaja SA, Thipphavong S, Kirsch R, Menezes RJ, Kennedy ED, Brierley JD, et al. Evaluation of a multiparametric MRI scoring system for histopathologic treatment response following preoperative chemoradiotherapy for rectal cancer. Eur J Radiol. 2021;138: 109628. https://doi.org/10.1016/j.ejrad.2021.109628.

    Article  PubMed  Google Scholar 

  85. Yakar M, Etiz D. Artificial intelligence in rectal cancer. Artif Intell Gastroenterol. 2021;2:10–26. https://doi.org/10.35712/aig.v2.i2.10.

    Article  Google Scholar 

  86. •• Horvat N, Bates DDB, Petkovska I. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY). 2019;44:3764–74. https://doi.org/10.1007/s00261-019-02042-y. A detailed review of radiomics/radiogenomics in rectal cancer, including basic concepts, benefits, pitfalls, and limitations, is discussed. The complex work-flow of radiomics/radiogenomics generation and the difficult biological correlation of their parameters obtained account for the low implementation in clinical practice.

  87. Staal FCR, van der Reijd DJ, Taghavi M, Lambregts DMJ, Beets-Tan RGH, Maas M. Radiomics for the prediction of treatment outcome and survival in patients with colorectal cancer: a systematic review. Clin Colorectal Cancer. 2021;20:52–71. https://doi.org/10.1016/j.clcc.2020.11.001.

    Article  PubMed  Google Scholar 

  88. Coppola F, Giannini V, Gabelloni M, Panic J, Defeudis A, Lo Monaco S, et al. Radiomics and magnetic resonance imaging of rectal cancer: from engineering to clinical practice. Diagnostics (Basel). 2021;11:756. https://doi.org/10.3390/diagnostics11050756.

    Article  Google Scholar 

  89. Badic B, Tixier F, Cheze Le Rest C, Hatt M, Visvikis D. Radiogenomics in colorectal cancer. Cancers (Basel). 2021;13:973. https://doi.org/10.3390/cancers13050973.

  90. Otazo R, Lambin P, Pignol JP, Ladd ME, Schlemmer HP, Baumann M, et al. MRI-guided radiation therapy: an emerging paradigm in adaptive radiation oncology. Radiology. 2021;298:248–60. https://doi.org/10.1148/radiol.2020202747.

    Article  PubMed  Google Scholar 

  91. Keller DS, Berho M, Perez RO, Wexner SD, Chand M. The multidisciplinary management of rectal cancer. Nat Rev Gastroenterol Hepatol. 2020;17:414–29. https://doi.org/10.1038/s41575-020-0275-y

  92. Bird D, Nix MG, McCallum H, Teo M, Gilbert A, Casanova N, et al. Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning. Radiother Oncol. 2021 Mar;156:23–8. https://doi.org/10.1016/j.radonc.2020.11.027.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kontovounisios C, Tekkis P, Bello F. 3D imaging and printing in pelvic colorectal cancer: ‘The New Kid on the Block.’ Tech Coloproctol. 2019;23:171–3. https://doi.org/10.1007/s10151-018-1922-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Emile SH, Wexner SD. Systematic review of the applications of three-dimensional printing in colorectal surgery. Colorectal Dis. 2019;21:261–9. https://doi.org/10.1111/codi.14480.

    Article  CAS  PubMed  Google Scholar 

  95. Papazarkadas X, Spartalis E, Patsouras D, Ioannidis A, Schizas D, Georgiou K, et al. The role of 3D printing in colorectal surgery: current evidence and future perspectives. In Vivo. 2019;33:297–302. https://doi.org/10.21873/invivo.11475.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto García-Figueiras.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diagnostic and Interventional Radiology Innovations in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Figueiras, R., Baleato-González, S., Canedo-Antelo, M. et al. Imaging Advances on CT and MRI in Colorectal Cancer. Curr Colorectal Cancer Rep 17, 113–130 (2021). https://doi.org/10.1007/s11888-021-00468-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-021-00468-5

Keywords

Navigation