Skip to main content

Advertisement

Log in

Volume Visualization: A Technical Overview with a Focus on Medical Applications

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

With the increasing availability of high-resolution isotropic three- or four-dimensional medical datasets from sources such as magnetic resonance imaging, computed tomography, and ultrasound, volumetric image visualization techniques have increased in importance. Over the past two decades, a number of new algorithms and improvements have been developed for practical clinical image display. More recently, further efficiencies have been attained by designing and implementing volume-rendering algorithms on graphics processing units (GPUs). In this paper, we review volumetric image visualization pipelines, algorithms, and medical applications. We also illustrate our algorithm implementation and evaluation results, and address the advantages and drawbacks of each algorithm in terms of image quality and efficiency. Within the outlined literature review, we have integrated our research results relating to new visualization, classification, enhancement, and multimodal data dynamic rendering. Finally, we illustrate issues related to modern GPU working pipelines, and their applications in volume visualization domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
Fig 6.
Fig 7.
Fig 8.
Fig 9.
Fig 10.
Fig 11.
Fig 12.
Fig 13.
Fig 14.
Fig 15.
Fig 16.
Fig 17.
Fig 18.
Fig 19.
Fig 20.
Fig 21.
Fig 22.
Fig 23.
Fig 24.

Similar content being viewed by others

References

  1. Preim B, Bartz D: Visualization in Medicine: Theory, Algorithms, and Applications (The Morgan Kaufmann Series in Computer Graphics), 1st edition. Morgan Kaufmann, San Mateo, 2007

    Google Scholar 

  2. Robb RA, Hanson DP: Biomedical image visualization research using the visible human datasets. Clin Anat 19(3):240–253, 2006

    Article  PubMed  Google Scholar 

  3. Linsen L, Hagen H, Hamann B: Visualization in Medicine and Life Sciences (Mathematics and Visualization), 1st edition. Springer, Berlin, 2007

    Google Scholar 

  4. Vidal F, et al: Principles and applications of computer graphics in medicine. Comput Graph Forum 25(1):113–137, 2006

    Article  Google Scholar 

  5. Udupa J, Herman G: 3D imaging in medicine, 2nd edition. CRC, Boca Raton, 2000

    Google Scholar 

  6. Peters TM: Topical review: images for guidance for surgical procedures. Phys Med Biol 51(14):R505–R540, 2006

    Article  PubMed  Google Scholar 

  7. Sielhorst T, Feuerstein M, Navab N: Advanced medical displays: a literature review of augmented reality. J Display Technol 4(4):451–467, 2008

    Article  Google Scholar 

  8. Baek SY, Sheafor DH, Keogan MT, DeLong DM, Nelson RC: Two-dimensional multiplanar and three-dimensional volume-rendered vascular CT in pancreatic carcinoma: interobserver agreement and comparison with standard helical techniques. Am J Roentgenol 176(6):1467–1473, 2001

    CAS  Google Scholar 

  9. Shekhar R, Zagrodsky V: Cine MPR: interactive multiplanar reformatting of four-dimensional cardiac data using hardware-accelerated texture mapping. IEEE Trans Inf Technol Biomed 7(4):384–393, 2003

    Article  PubMed  Google Scholar 

  10. Roos JE, Fleischmann D, et al: Multipath curved planar reformation of the peripheral arterial tree in CT angiography. Radiology 244:281–290, 2007

    Article  PubMed  Google Scholar 

  11. Lv X, Gao X, Zou H: Interactive curved planar reformation based on snake model. Comput Med Imaging Graph 32(8):662–669, 2008

    Article  PubMed  Google Scholar 

  12. van Ooijen PMA, Ho KY, Dorgelo J, Oudkerk M: Coronary artery imaging with multidetector CT: visualization issues. Radiographics 23:e16, 2003

    Article  PubMed  Google Scholar 

  13. Kim HC, Yang DM, Jin W, Park SJ: Added diagnostic value of multiplanar reformation of multidetector CT data in patients with suspected appendicitis. Radiographics 28:393–405, 2008

    Article  PubMed  CAS  Google Scholar 

  14. Williams D, Grimm S, Coto E, Roudsari A, Hatzakis H: Volumetric curved planar reformation for virtual endoscopy. IEEE Trans Vis Comput Graph 14(1):109–119, 2008

    Article  PubMed  Google Scholar 

  15. Rodallec MH, Marteau V, Gerber S, Desmottes L, Zins M: Craniocervical arterial dissection: spectrum of imaging findings and differential diagnosis. Radiographics 28:1711–1728, 2008

    Article  PubMed  Google Scholar 

  16. Joemai RMS, Geleijns J, Veldkamp WJH, de Roos A, Kroft LJM: Automated cardiac phase selection with 64-MDCT coronary angiography. AJR Am J Roentgenol 191:1690–1697, 2008

    Article  PubMed  Google Scholar 

  17. Tiede U, et al: Surface rendering. IEEE Comput Graph Appl 10(2):41–53, 1990

    Article  Google Scholar 

  18. Tatarchuk N, Shopf J, De Coro C: Advanced interactive medical visualization on the GPU. J Parallel Distrib Comput 68(10):1319–1328, 2008

    Article  Google Scholar 

  19. Buchart C, Borro D, Amundarain A: GPU local triangulation: an interpolating surface reconstruction algorithm. Comput Graph Forum 27(3):807–814, 2008

    Article  Google Scholar 

  20. Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M: Realtime ray-casting and advanced shading of discrete isosurfaces. Comput Graph Forum 24(3):303–312, 2005

    Article  Google Scholar 

  21. Hirano M, Itoh T, Shirayama S: Numerical visualization by rapid isosurface extractions using 3D span spaces. J Vis 11(3):189–196, 2008

    Article  Google Scholar 

  22. Petrik S, Skala V: Technical section: space and time efficient isosurface extraction. Comput Graph 32(6):704–710, 2008

    Article  Google Scholar 

  23. Zhang X, Bajaj C: Scalable isosurface visualization of massive datasets on commodity off-the-shelf clusters. J Parallel Distrib Comput 69(1):39–53, 2009

    Article  PubMed  Google Scholar 

  24. Kim S, Choi B, Kim S, Lee J: Three-dimensional imaging for hepatobiliary and pancreatic diseases: emphasis on clinical utility. Indian J Radiol Imaging 19:7–15, 2009

    Article  PubMed  CAS  Google Scholar 

  25. Schellinger PD, Richter G, Köhrmann M, Dörfler A: Noninvasive angiography (magnetic resonance and computed tomography) in the diagnosis of ischemic cerebrovascular disease. Cerebrovasc Dis 24(1):16–23, 2007

    Article  PubMed  Google Scholar 

  26. Park SH, Choi EK, et al: Linear polyp measurement at CT colonography: 3D endoluminal measurement with optimized surface-rendering threshold value and automated measurement. Radiology 246:157–167, 2008

    Article  PubMed  Google Scholar 

  27. Drebin R, Carpenter L, Hanrahan P: Volume rendering. In: Proceedings SIGGRAPH88, 1988, pp 65–74

  28. Johnson C, Hansen C: Visualization Handbook. Academic, Orlando, 2004

    Google Scholar 

  29. Hadwiger M, Kniss JM, Rezk-salama C, Weiskopf D, Engel K: Real-Time Volume Graphics, 1st edition. A. K. Peters, Natick, 2006

    Google Scholar 

  30. Levoy M: Display of surfaces from volume data. IEEE Comput Graph Appl 8(3):29–37, 1988

    Article  Google Scholar 

  31. Höhne KH, Bomans M, Pommert A, Riemer M, Schiers C, Tiede U, Wiebecke G: 3D visualization of tomographic volume data using the generalized voxel model. Vis Comput 6(1):28–36, 1990

    Article  Google Scholar 

  32. Krüger J, Westermann R: Acceleration techniques for GPU-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Computer Society, Washington, DC, USA, 2003, pp. 287–292

  33. Westover L: Interactive volume rendering. In: Proceedings of the 1989 Chapel Hill Workshop on Volume visualization, ACM, 1989, pp 9–16

  34. Westover L: Footprint evaluation for volume rendering. In: SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 1990, pp. 367–376

  35. Udupa JK, Odhner D: Shell rendering. IEEE Comput Graph Appl 13(6):58–67, 1993

    Article  Google Scholar 

  36. Gelder AV, Kim K: Direct volume rendering with shading via three-dimensional textures. In: Proc. of the 1996 Symposium on Volume Visualization. IEEE, 1996, pp 23–30

  37. Marroquim R, Maximo A, Farias RC, Esperança C: Volume and isosurface rendering with GPU-accelerated cell projection. Comput Graph Forum 27(1):24–35, 2008

    Article  Google Scholar 

  38. Lacroute P, Levoy M: Fast volume rendering using a shear-warp factorization of the viewing transformation. Comput Graph 28(Annual Conference Series):451–458, 1994

    Google Scholar 

  39. Mroz L, Hauser H, Gröller E: Interactive high-quality maximum intensity projection. Comput Graph Forum 19(3):341–350, 2000

    Article  Google Scholar 

  40. Robb R: X-ray computed tomography: from basic principles to applications. Annu Rev Biophys Bioeng 11:177–182, 1982

    Article  PubMed  CAS  Google Scholar 

  41. Mor-Avi V, Sugeng L, Lang RM: Real-time 3-dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients? Circulation 119:314–329, 2009

    Article  PubMed  Google Scholar 

  42. Ahmetoglu A, Kosucu P, Kul S, et al: MDCT cholangiography with volume rendering for the assessment of patients with biliary obstruction. Am J Roentgenol 183:1327–1332, 2004

    Google Scholar 

  43. Yeh C, Wang J-F, Wu M-T, Yen C-W, Nagurka ML, Lin C-L: A comparative study for 2D and 3D computer-aided diagnosis methods for solitary pulmonary nodules. Comput Med Imaging Graph 32(4):270–276, 2008

    Article  PubMed  Google Scholar 

  44. Fishman EK, Horton KM, Johnson PT: Multidetector CT and three-dimensional CT angiography for suspected vascular trauma of the extremities. Radiographics 28:653–665, 2008

    Article  PubMed  Google Scholar 

  45. Singh AK, Sahani DV, Blake MA, Joshi MC, Wargo JA, del Castillo CF: Assessment of pancreatic tumor respectability with multidetector computed tomography: semiautomated console-generated images versus dedicated workstation-generated images. Acad Radiol 15(8):1058–1068, 2008

    Article  PubMed  Google Scholar 

  46. Fishman EK, Ney DR, et al: Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26:905–922, 2006

    Article  PubMed  Google Scholar 

  47. Gill RR, Poh AC, Camp PC, et al: MDCT evaluation of central airway and vascular complications of lung transplantation. Am J Roentgenol 191:1046–1056, 2008

    Article  Google Scholar 

  48. Blinn JF: Light reflection functions for simulation of clouds and dusty surfaces. Comput Graph 16(3):21–29, 1982

    Article  Google Scholar 

  49. Max N: Optical models for direct volume rendering. IEEE Trans Vis Comput Graph 1(2):99–108, 1995

    Article  Google Scholar 

  50. Rezk-Salama C: Volume Rendering Techniques for General Purpose Graphics Hardware. Ph.D. thesis, University of Siegen, Germany, 2001

  51. Engel K, Kraus M, Ertl T: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Eurographics/SIGGRAPH Workshop on Graphics Hardware ’01, Annual Conference Series, Addison-Wesley Publishing Company, Inc., 2001, pp 9–16

  52. Kraus M: Direct Volume Visualization of Geometrically Unpleasant Meshes. Ph.D. thesis, Universität Stuttgart, Germany, 2003

  53. Kraus M, Ertl T: Pre-integrated volume rendering. In: Hansen C, Johnson C Eds. The Visualization Handbook. Academic, New York, 2004, pp 211–228

    Google Scholar 

  54. Röttger S, Kraus M, Ertl T: Hardware-accelerated volume and isosurface rendering based on cell-projection. In: VIS ’00: Proc. of the Conf. on Visualization ’00. IEEE Computer Society, Los Alamitos, 2000, pp 109–116

  55. Max N, Hanrahan P, Crawfis R: Area and volume coherence for efficient visualization of 3D scalar functions. SIGGRAPH Comput Graph 24(5):27–33, 1990

    Article  Google Scholar 

  56. Roettger S, Guthe S, Weiskopf D, Ertl T, Strasser W: Smart hardware-accelerated volume rendering. In: Proc. of the Symposium on Data Visualisation 2003. Eurographics Association, 2003, pp 231–238

  57. Zhang Q, Eagleson R, Peters TM: Rapid voxel classification methodology for interactive 3D medical image visualization. In: MICCAI (2), 2007, pp 86–93

  58. Kye H, Shin B-S, Shin YG: Interactive classification for pre-integrated volume rendering of high-precision volume data. Graph Models 70(6):125–132, 2008

    Article  Google Scholar 

  59. Hajjar J-FE, Marchesin S, Dischler J-M, Mongenet C: Second order pre-integrated volume rendering. In: PacificVis, 2008, pp 9–16

  60. Kraus M: Pre-integrated volume rendering for multidimensional transfer functions. In: IEEE/EG Symposium on Volume and Point-based Graphics, 2008, pp 97–104

  61. Sato Y, Westin C-F, Bhalerao A, Nakajima S, Shiraga N, Tamura S, Kikinis R: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Vis Comput Graph 6:2000, 2000

    Article  Google Scholar 

  62. Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder W, Avila LS, Martin K, Machiraju R, Lee J: The transfer function bake-off. IEEE Comput Graph Appl 21(3):16–22, 2001

    Article  Google Scholar 

  63. Kniss J, Kindlmann GL, Hansen CD: Multidimensional transfer functions for interactive volume rendering. IEEE Trans Vis Comput Graph 8(3):270–285, 2002

    Article  Google Scholar 

  64. Abellán P, Tost D: Multimodal volume rendering with 3D textures. Comput Graph 32(4):412–419, 2008

    Article  Google Scholar 

  65. Hadwiger M, Laura F, Rezk-Salama C, Höllt T, Geier G, Pabel T: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans Vis Comput Graph 14(6):1507–1514, 2008

    Article  PubMed  Google Scholar 

  66. Petersch B, Hadwiger M, Hauser H, Hönigmann D: Real time computation and temporal coherence of opacity transfer functions for direct volume rendering of ultrasound data. Comput Med Imaging Graph 29(1):53–63, 2005

    Article  PubMed  Google Scholar 

  67. Rezk-Salama C, Keller M, Kohlmann P: High-level user interfaces for transfer function design with semantics. IEEE Trans Vis Comput Graph 12(5):1021–1028, 2006

    Article  Google Scholar 

  68. Rautek P, Bruckner S, Gröller E: Semantic layers for illustrative volume rendering. IEEE Trans Vis Comput Graph 13(6):1336–1343, 2007

    Article  PubMed  Google Scholar 

  69. Freiman M, Joskowicz L, Lischinski D, Sosna J: A feature-based transfer function for liver visualization. Int J CARS 2(1):125–126, 2007

    Google Scholar 

  70. de Pinto FM, Freitas CMDS: Volume visualization and exploration through flexible transfer function design. Comput Graph 32(5):540–549, 2008

    Article  Google Scholar 

  71. Zhang Q, Eaglesona R, Peters TM: Graphics hardware based volumetric medical dataset visualization and classification. In: Proc. of SPIE Med. Imaging, Vol. 6141, San Diego, CA, 2006, pp 61412T-1–11

  72. Bruckner S, Gröller ME: Style transfer functions for illustrative volume rendering. Comput Graph Forum 26(3):715–724, 2007

    Article  Google Scholar 

  73. Bruckner S, Gröller E: Enhancing depth-perception with flexible volumetric halos. IEEE Trans Vis Comput Graph 13(6):1344–1351, 2007

    Article  PubMed  Google Scholar 

  74. Wu Y, Qu H: Interactive transfer function design based on editing direct volume rendered images. IEEE Trans Vis Comput Graph 13(5):1027–1040, 2007

    Article  PubMed  Google Scholar 

  75. Correa C, Ma K-L: Size-based transfer functions: a new volume exploration technique. IEEE Trans Vis Comput Graph 14(6):1380–1387, 2008

    Article  PubMed  Google Scholar 

  76. Caban J, Rheingans P: Texture-based transfer functions for direct volume rendering. IEEE Trans Vis Comput Graph 14(6):1364–1371, 2008

    Article  PubMed  Google Scholar 

  77. Rezk-Salama C: Visual parameters and transfer functions. In: Zudilova-Seinstra E, Adriaansen T, van Liere R Eds. Trends in Interactive Visualization: State-of-the-Art Survey. Springer, Berlin, 2008, pp 99–116

    Google Scholar 

  78. Laidlaw DH, Fleischer KW, Barr AH: Partial-volume bayesian classification of material mixtures in MR volume data using voxel histograms. IEEE Trans Med Imaging 17(1):74–86, 1998

    Article  PubMed  CAS  Google Scholar 

  79. Lundström C, Ljung P, Ynnerman A: Local histograms for design of transfer functions in direct volume rendering. IEEE Trans Vis Comput Graph 12(6):1570–1579, 2006

    Article  PubMed  Google Scholar 

  80. Souza A, Udupa JK, Saha PK: Volume rendering in the presence of partial volume effects. IEEE Trans Med Imaging 24(2):223–235, 2005

    Article  PubMed  Google Scholar 

  81. Jani AB, Johnstone PAS, Fox T, Pelizzari C: Optimization of opacity function for computed tomography volume rendered images of the prostate using magnetic resonance reference volumes. Int J Comput Assist Radiol Surg 1(5):285–293, 2007

    Article  Google Scholar 

  82. Mora B, Ebert DS: Low-complexity maximum intensity projection. ACM Trans Graph 24(4):1392–1416, 2005

    Article  Google Scholar 

  83. Kye H, Jeong D: Accelerated MIP based on GPU using block clipping and occlusion query. Comput Graph 32(3):283–292, 2008

    Article  Google Scholar 

  84. Rubin GD, Rofsky NM: CT and MR Angiography: Comprehensive Vascular Assessment, 1st edition. Williams & Wilkins, Baltimore, 2008

    Google Scholar 

  85. Blinn JF: Compositing. 1. Theory. IEEE Trans Vis Comput Graph 14(5):83–87, 1994

    Google Scholar 

  86. Kautz J: Hardware lighting and shading: a survey. Comput Graph Forum 23(1):85–112, 2004

    Article  Google Scholar 

  87. Kniss J, Premoze S, Hansen CD, Shirley P, McPherson A: A model for volume lighting and modeling. IEEE Trans Vis Comput Graph 9(2):150–162, 2003

    Article  Google Scholar 

  88. Weiskopf D, Engel K, Ertl T: Interactive clipping techniques for texture-based volume visualization and volume shading. IEEE Trans Vis Comput Graph 9(3):298–312, 2003

    Article  Google Scholar 

  89. Rautek P, Bruckner S, Gröller ME: Interaction-dependent semantics for illustrative volume rendering. Comput Graphics Forum 27(3):847–854, 2008

    Article  Google Scholar 

  90. Silverstein JC, Parsad NM, Tsirline V: Automatic perceptual color map generation for realistic volume visualization. J Biomed Inform 41(6):927–935, 2008

    Article  PubMed  Google Scholar 

  91. Wang L, Giesen J, McDonnell KT, Zolliker P, Mueller K: Color design for illustrative visualization. IEEE Trans Vis Comput Graph 14(6):1739–1754, 2008

    Article  PubMed  Google Scholar 

  92. Rezk-Salama C, Todt S, Kolb A: Raycasting of light field galleries from volumetric data. Comput Graph Forum 27(3):839–846, 2008

    Article  Google Scholar 

  93. Jainek WM, Born S, Bartz D, Straßer W, Fischer J: Illustrative hybrid visualization and exploration of anatomical and functional brain data. Comput Graph Forum 27(3):855–862, 2008

    Article  Google Scholar 

  94. Svakhine NA, Ebert DS, Andrews WM: Illustration-inspired depth enhanced volumetric medical visualization. IEEE Trans Vis Comput Graph 15(1):77–86, 2009

    Article  PubMed  Google Scholar 

  95. Rheingans P, Ebert D: Volume illustration: nonphotorealistic rendering of volume models. IEEE Trans Vis Comput Graph 7(3):253–264, 2001

    Article  Google Scholar 

  96. Dong F, Clapworthy G: Volumetric texture synthesis for nonphotorealistic volume rendering of medical data. Vis Comput 21(7):463–473, 2005

    Article  Google Scholar 

  97. Bruckner S, Grimm S, Kanitsar A, Gröller ME: Illustrative context-preserving exploration of volume data. IEEE Trans Vis Comput Graph 12(6):1559–1569, 2006

    Article  PubMed  Google Scholar 

  98. Noordmans HJ, van der Voort HTM, Smeulders AWM: Spectral volume rendering. IEEE Trans Vis Comput Graph 6(3):196–207, 2000

    Article  Google Scholar 

  99. Bergner S, Möller T, Tory M, Drew MS: A practical approach to spectral volume rendering. IEEE Trans Vis Comput Graph 11(2):207–216, 2005

    Article  PubMed  Google Scholar 

  100. Bergner S, Drew MS, Möller T: A tool to create illuminant and reflectance spectra for light-driven graphics and visualization. ACM Trans Graph 28(1):1–11, 2009

    Article  Google Scholar 

  101. Strengert M, Klein T, Botchen RP, Stegmaier S, Chen M, Ertl T: Spectral volume rendering using GPU-based raycasting. Vis Comput 22(8):550–561, 2006

    Article  Google Scholar 

  102. Kersten M, Stewart J, Troje N, Ellis R: Enhancing depth perception in translucent volumes. IEEE Trans Vis Comput Graph 12:1117–1124, 2006

    Article  PubMed  Google Scholar 

  103. Joshi A, Qian X, Dione DP, Bulsara KR, Breuer CK, Sinusas AJ, Papademetris X: Effective visualization of complex vascular structures using a non-parametric vessel detection method. IEEE Trans Vis Comput Graph 14(6):1603–1610, 2008

    Article  PubMed  Google Scholar 

  104. Ropinski T, Meyer-Spradow J, Diepenbrock S, Mensmann J, Hinrichs K: Interactive volume rendering with dynamic ambient occlusion and color bleeding. Comput Graph Forum 27(2):567–576, 2008

    Article  Google Scholar 

  105. Mora B, Maciejewski R, Chen M, Ebert DS: Visualization and computer graphics on isotropically emissive volumetric displays. IEEE Trans Vis Comput Graph 15(2):221–234, 2009

    Article  PubMed  Google Scholar 

  106. Chan M-Y, Qu H, Chung K-K, Mak W-H, Wu Y: Relation-aware volume exploration pipeline. IEEE Trans Vis Comput Graph 14(6):1683–1690, 2008

    Article  PubMed  Google Scholar 

  107. Rautek P, Bruckner S, Gröller E, Viola I: Illustrative visualization: new technology or useless tautology? SIGGRAPH Comput Graph 42(3):1–8, 2008

    Article  Google Scholar 

  108. Sakas G, Schreyer L-A, Grimm M: Preprocessing and volume rendering of 3D ultrasonic data. IEEE Comput Graph Appl 15(4):47–54, 1995

    Article  Google Scholar 

  109. Tiede U, Schiemann T, Höhne KH: Visualizing the visible human. IEEE Comput Graph Appl 16(1):7–9, 1996

    Article  Google Scholar 

  110. Levoy M: Volume rendering by adaptive refinement. Vis Comput 6(1):2–7, 1990

    Article  Google Scholar 

  111. Levoy M: Efficient ray tracing of volume data. ACM Trans Graph 9(3):245–261, 1990

    Article  Google Scholar 

  112. Lee RK, Ihm I: On enhancing the speed of splatting using both object-and-image space coherence. Graph models image process 62(4):263–282, 2000

    Google Scholar 

  113. Grimm S, Bruckner S, Kanitsar A, Gröller ME: A refined data addressing and processing scheme to accelerate volume raycasting. Comput Graph 28(5):719–729, 2004

    Article  Google Scholar 

  114. Lee RK, Ihm I: On enhancing the speed of splatting using both object- and image-space coherence. Graph Models 62(4):263–282, 2000

    Article  Google Scholar 

  115. Meißner M, Huang J, Bartz D, Mueller K, Crawfis R: A practical evaluation of popular volume rendering algorithms. In: VVS ’00: Proc. of the 2000 IEEE symposium on Volume Visualization, ACM Press, New York, NY, USA, 2000, pp 81–90

  116. Higuera FV, Hastreiter P, Fahlbusch R, Greiner G: High performance volume splatting for visualization of neurovascular data. In: IEEE Visualization, 2005, p 35

  117. Spoerk J, Bergmann H, Wanschitz F, Dong S, Birkfellner W: Fast DRR splat rendering using common consumer graphics hardware. Med Phys 34(11):4302–4308, 2007

    Article  PubMed  Google Scholar 

  118. Audigier R, Lotufo R, Falcão A: 3D visualization to assist iterative object definition from medical images. Comput Med Imaging Graph 4(20):217–230, 2006

    Article  Google Scholar 

  119. Mueller K, Shareef N, Huang J, Crawfis R: High-quality splatting on rectilinear grids with efficient culling of occluded voxels. IEEE Trans Vis Comput Graph 5(2):116–134, 1999

    Article  Google Scholar 

  120. Neophytou N, Mueller K: Gpu accelerated image aligned splatting. In: Volume Graphics, 2005, pp 197–205

  121. Subr K, Diaz-Gutierrez P, Pajarola R, Gopi M: Order Independent, Attenuation-Leakage Free Splatting Using Freevoxels, Tech. Rep. IFI-2007.01, Department of Informatics, University of Zürich, 2007

  122. Zwicker M, Pfister H, van Baar J, Gross MH: EWA splatting. IEEE Trans Vis Comput Graph 8(3):223–238, 2002

    Article  Google Scholar 

  123. Xue D, Crawfis R: Efficient splatting using modern graphics hardware. J Graphics Tools 8(3):1–21, 2004

    Google Scholar 

  124. Schulze JP, Niemeier R, Lang U: The perspective shear-warp algorithm in a virtual environment. In: Proc. of the conference on Visualization ’01. IEEE Computer Society, 2001, pp 207–214

  125. Anagnostou K, Atherton T, Waterfall A: 4D volume rendering with the shear warp factorisation: extensions and quantitative results. In: Proc. of the FifthInt. Conf. on Information Visualisation (IV’01). IEEE Computer Society, 2001, p 435

  126. Wan M, Zhang N, Qu H, Kaufman AE: Interactive stereoscopic rendering of volumetric environments. IEEE Trans Vis Comput Graph 10(1):15–28, 2004

    Article  PubMed  Google Scholar 

  127. Sweeney J, Mueller K: Shear-warp deluxe: the shear-warp algorithm revisited. In: VISSYM ’02: Proceedings of the symposium on Data Visualisation. Eurographics Association, Aire-la-Ville, 2002, pp 95–104

  128. Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L: The volumepro real-time ray-casting system. In: Proc. of the 26th Annual Conference on Computer Graphics and Interactive Techniques. ACM/Addison-Wesley, 1999, pp 251–260

  129. Lim S, Shin B-S: An efficient perspective projection using volumepro. In: Int. Conf. on Computational Science, 2004, pp 396–403

  130. Schulze JP, Kraus M, Lang U, Ertl T: Integrating pre-integration into the shear-warp algorithm. In: Proc. of the 2003 Eurographics/IEEE TVCG Workshop on Volume graphics. ACM, 2003, pp 109–118

  131. Kye H, Oh K: High-quality shear-warp volume rendering using efficient supersampling and pre-integration technique. In: ICAT, 2006, pp 624–632

  132. Grevera GJ, Udupa JK, Odhner D: An order of magnitude faster isosurface rendering in software on a pc than using dedicated, general purpose rendering hardware. IEEE Trans Vis Comput Graph 6(4):335–345, 2000

    Article  Google Scholar 

  133. Falcão AX, Rocha LM, Udupa JK: A combined approach of shell and shear-warp rendering for efficient volume visualization. In: Proc. of SPIE Med. Imaging, Vol. 5029, 2003, pp 569–580

  134. Lei T, Udupa JK, Saha PK, Odhner D: Artery–vein separation via MRA—an image processing approach. IEEE Trans Med Imaging 20(8):689–703, 2001

    Article  PubMed  CAS  Google Scholar 

  135. Bullitt E, Aylward S: Volume rendering of segmented image objects. IEEE Trans Med Imag 21(8):998–1002, 2002

    Article  Google Scholar 

  136. Falcao AX, Rocha LM, Udupa JK: A comparative analysis of shell rendering and shear-warp rendering. In: Proc. of SPIE Med. Imaging, Vol. 4681, San Diego, CA, 2002, pp 472–482

  137. Botha CP, Post FH: Shellsplatting: interactive rendering of anisotropic volumes. In: Proc. of the Symposium on Data Visualization 2003. Eurographics Association, 2003, pp 105–112

  138. Grevera GJ, Udupa JK, Odhner D: T-shell rendering and manipulation. In: Proc. of SPIE Med. Imaging, Vol. 5744, San Diego, CA, 2005, pp 22–33

  139. Cullip TJ, Neumann U: Accelerating volume reconstruction with 3D texture hardware, Tech. rep. University of North Carolina, Chapel Hill, 1994

    Google Scholar 

  140. Cabral B, Cam N, Foran J: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proc. of the 1994 Symposium on Volume Visualization. ACM, 1994, pp 91–98

  141. Sato Y, Westin C-F, Bhalerao A, Nakajima S, Shiraga N, Tamura S, Kikinis R: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Vis Comput Graph 6(2):160–180, 2000

    Article  Google Scholar 

  142. Hauser H, Mroz L, Bischi GI, Gröller E: Two-level volume rendering. IEEE Trans Vis Comput Graph 7(3):242–252, 2001

    Article  Google Scholar 

  143. Hadwiger M, Berger C, Hauser H: High-quality two-level volume rendering of segmented data sets on consumer graphics hardware, in: VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Computer Society, Washington, DC, USA, 2003, p 40

  144. Sereda P, Bartrolí AV, Serlie I, Gerritsen FA: Visualization of boundaries in volumetric data sets using lh histograms. IEEE Trans Vis Comput Graph 12(2):208–218, 2006

    Article  PubMed  Google Scholar 

  145. Ljung P, Persson A, Ynnerman A, Lundström C: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans Vis Comput Graph 13(6):1648–1655, 2007

    Article  PubMed  Google Scholar 

  146. Xie K, Sun G, Yang J, Zhu YM: Interactive volume cutting of medical data. Comput Biol Med 37(8):1155–1159, 2007

    Article  PubMed  Google Scholar 

  147. Kim J, Eberl S, Feng D: Visualizing dual-modality rendered volumes using a dual-lookup table transfer function. Comput Sci Eng 9(1):20–25, 2008

    Article  Google Scholar 

  148. Holmes D, Davis B, Bruce C, Robb R: 3D visualization, analysis, and treatment of the prostate using trans-urethral ultrasound. Comput Med Imaging Graph 27(5):339–349, 2003

    Article  PubMed  Google Scholar 

  149. Etlik Ö, Temizöz O, Dogan A, Kayan M, Arslan H, Unal Ö: Three-dimensional volume rendering imaging in detection of bone fractures. Eur J Gen Med 1(4):48–52, 2004

    Google Scholar 

  150. Wenger A, Keefe DF, Zhang S, Laidlaw DH: Interactive volume rendering of thin thread structures within multivalued scientific data sets. IEEE Trans Vis Comput Graph 10(6):664–672, 2004

    Article  PubMed  Google Scholar 

  151. Wang A, Narayan G, Kao D, Liang D: An evaluation of using real-time volumetric display of 3D ultrasound data for intracardiac catheter manipulation tasks. Comput Med Imaging Graph 41–45, 2005

  152. Sharp R, Adams J, Machiraju R, Lee R, Crane R: Physics-based subsurface visualization of human tissue. IEEE Trans Vis Comput Graph 13(3):620–629, 2007

    Article  PubMed  Google Scholar 

  153. Lopera JE, et al: Multidetector CT angiography of infrainguinal arterial bypass. Radiographics 28:529–548, 2008

    Article  PubMed  Google Scholar 

  154. Siddiki H, et al: Abdominal findings in hereditary hemorrhagic telangiectasia: pictorial essay on 2D and 3D findings with isotropic multiphase CT. Radiographics 28:171–183, 2008

    Article  PubMed  Google Scholar 

  155. Aspin R, Smith M, Hutchinson C, Funk L: Medivol: An initial study into real-time, interactive 3D visualisation of soft tissue pathologies. In: DS-RT ’08: Proceedings of the 2008 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications. IEEE Computer Society, Washington, 2008, pp 103–110

  156. Levin D, Aladl U, Germano G, Slomka P: Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware. Comput Med Imaging Graph 29(6):463–475, 2005

    Article  PubMed  Google Scholar 

  157. Yuan X, Nguyen MX, Chen B, Porter DH: Hdr volvis: high dynamic range volume visualization. IEEE Trans Vis Comput Graph 12(4):433–445, 2006

    Article  PubMed  Google Scholar 

  158. Correa CD, Silver D, Chen M: Feature aligned volume manipulation for illustration and visualization. IEEE Trans Vis Comput Graph 12(5):1069–1076, 2006

    Article  PubMed  Google Scholar 

  159. Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl T: Interactive volume rendering on standard PC graphics hardware using multi-textures and multi-stage rasterization. SIGGRAPH/Eurographics Workshop on Graphics Hardware (August) (2000) 109–118

  160. Li W, Kaufman A: Accelerating volume rendering with texture hulls. IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics, 2002, 115–122

  161. Li W, Mueller K, Kaufman A: Empty space skipping and occlusion clipping for texture-based volume rendering. IEEE Vis 317–324, 2003

  162. Bethune C, Stewart AJ: Adaptive slice geometry for hardware-assisted volume rendering. J Graphics Tools 10(1):55–70, 2005

    Google Scholar 

  163. Keleş HY, Es A, İşler V: Acceleration of direct volume rendering with programmable graphics hardware. Vis Comput 23(1):15–24, 2007

    Article  Google Scholar 

  164. Xie K, Yang J, Zhu YM: Real-time visualization of large volume datasets on standard pc hardware. Comput Methods Programs Biomed 90(2):117–123, 2008

    Article  PubMed  Google Scholar 

  165. Frank S, Kaufmanl A: Out-of-core and dynamic programming for data distribution on a volume visualization cluster. Comput Graph Forum 28(1):141–153, 2009

    Article  Google Scholar 

  166. Lamar EC, Hamann B, Joy KI: Multiresolution techniques for interactive texture-based volume visualization. IEEE Vis 355–362, 1999

  167. Boada I, Navazo I, Scopigno R: Multiresolution volume visualization with a texture-based octree. Vis Comput 17(3):185–197, 2001

    Article  Google Scholar 

  168. Käehler R, Hege H-C: Texure-based volume rendering of adaptive mesh refinement data. Vis Comput 18(8):481–492, 2002

    Article  Google Scholar 

  169. Kähler R, Simon M, Hege H-C: Interactive volume rendering of large sparse data sets using adaptive mesh refinement hierarchies. IEEE Trans Vis Comput Graph 9(3):341–351, 2003

    Article  Google Scholar 

  170. Gao J, Wang C, Li L, Shen H-W: A parallel multiresolution volume rendering algorithm for large data visualization. Parallel Comput 31(2):185–204, 2005

    Article  Google Scholar 

  171. Nguyen KG, Saupe D: Rapid high quality compression of volume data for visualization. Comput Graph Forum 20(3), 2001

  172. Guthe S, Straßer W: Advanced techniques for high-quality multi-resolution volume rendering. Comput Graph 28(1):51–58, 2004

    Article  Google Scholar 

  173. Xie K, Yang J, Zhu YM: Real-time rendering of 3D medical data sets. Future Gener Comput Syst 21(4):573–581, 2005

    Article  Google Scholar 

  174. Goodnight N, Wang R, Humphreys G: Computation on programmable graphics hardware. IEEE Comput Graph Appl 25(5):12–15, 2005

    Article  PubMed  Google Scholar 

  175. Owens JD, Luebke D, Govindaraju N, Harris M, Krger J, Lefohn AE, Purcell TJ: A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26(1):80–113, 2007

    Article  Google Scholar 

  176. Lefohn AE, Sengupta S, Kniss J, Strzodka R, Owens JD: Glift: generic, efficient, random-access GPU data structures. ACM Trans Graph 25(1):60–99, 2006

    Article  Google Scholar 

  177. Buck I, Foley T, Horn DR, Sugerman J, Fatahalian K, Houston M, Hanrahan P: Brook for GPUs: stream computing on graphics hardware. ACM Trans Graph 23(3):777–786, 2004

    Article  Google Scholar 

  178. NVidia: NVidia compute unified device architecture (CUDA) programming guide, version 1.0, 2007

  179. AMD: “Close to Metal” technology unleashes the power of stream computing: AMD Press Release, 2006

  180. Fatahalian K, Houston M: A closer look at gpus. Commun ACM 51(10):50–57, 2008

    Article  Google Scholar 

  181. Beyer J, Hadwiger M, Wolfsberger S, Bühler K: High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Trans Vis Comput Graph 13(6):1696–1703, 2007

    Article  PubMed  Google Scholar 

  182. Dillard SE, Weber GH, Carr H, Pascucci V, Hamann B: Topology-controlled volume rendering. IEEE Trans Vis Comput Graph 13(2):330–341, 2007

    Article  PubMed  Google Scholar 

  183. Termeer M, Bescós JO, Breeuwer M, Vilanova A, Gerritsen F, Gröller E: Covicad: comprehensive visualization of coronary artery disease. IEEE Trans Vis Comput Graph 13(6):1632–1639, 2007

    Article  PubMed  Google Scholar 

  184. Rieder C, Ritter F, Raspe M, Peitgen H-O: Interactive visualization of multimodal volume data for neurosurgical tumor treatment. Comput Graph Forum 27(3):1055–1062, 2008

    Article  Google Scholar 

  185. Ljung P, Winskog C, Persson A, Lundström C, Ynnerman A: Full body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Trans Vis Comput Graph 12(5):869–876, 2006

    Article  PubMed  Google Scholar 

  186. Wang X, Good W: Real-time stereographic rendering and display of medical images with programmable GPUs. Comput Med Imaging Graph 13(2):118–123, 2008

    Article  Google Scholar 

  187. Krüger A, Kubisch C, Strauß G, Preim B: Sinus endoscopy—application of advanced GPU volume rendering for virtual endoscopy. IEEE Trans Vis Comput Graph 14(6):1491–1498, 2008

    Article  Google Scholar 

  188. Mayerich D, Abbott L, Keyser J: Visualization of cellular and microvascular relationships. IEEE Trans Vis Comput Graph 14(6):1611–1618, 2008

    Article  PubMed  Google Scholar 

  189. Lee TH, Shin YG: Coherence aware GPU-based ray casting for virtual colonoscopy. J Vis Comput Animat 20(1):1–9, 2009

    Google Scholar 

  190. Lim S, Kwon K, Shin B-S: GPU-based interactive visualization framework for ultrasound datasets. Comput Anim Virtual Worlds 20(1):11–23, 2009

    Article  Google Scholar 

  191. Zhang Q, Eagleson R, Peters TM: Real-time visualization of 4D cardiac MR images using graphics processing units. In: ISBI, 2006, pp 343–346

  192. Zhang Q, Eagleson R, Peters T: Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering. Comput Med Imaging Graph 33(6):461–476, 2009

    Article  PubMed  Google Scholar 

  193. Zhang Q, Eagleson R, Peters TM: GPU-based image manipulation and enhancement techniques for dynamic volumetric medical image visualization. In: ISBI, 2007, pp 1168–1171

  194. Zhang Q, Huang X, Eagleson R, Guiraudon G, Peters TM: Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU. In: Proc. of SPIE Med. Imaging, Vol. 6509. San Diego, CA, USA, 2007, pp 65092D-1–11

  195. Zhang Q, Eagleson R, Guiraudon G, Peters TM: High-quality anatomical structure enhancement for cardiac image dynamic volume rendering. In: Proc. of SPIE Med. Imaging, Vol. 6509, San Diego, CA, USA, 2008, pp 65092D-1–10

  196. Zhang Q, Eagleson R, Peters TM: High-quality cardiac image dynamic visualization with feature enhancement and virtual surgical tool inclusion. Vis Comput 25(11):1019–1035, 2009

    Article  CAS  Google Scholar 

  197. Zhang Q, Eagleson R, Peters TM: A software platform for real-time visualization and manipulation of 4D cardiac images. In: FIMH, 2009, pp 396–406

  198. Wang Q, JaJa J: Interactive high-resolution isosurface ray casting on multicore processors. IEEE Trans Vis Comput Graph 14(3):603–614, 2008

    Article  PubMed  Google Scholar 

  199. Bruckner S, Gröller ME: Exploded views for volume data. IEEE Trans Vis Comput Graph 12(5):1077–1084, 2006

    Article  PubMed  Google Scholar 

  200. Rezk-Salama C, Kolb A: Opacity peeling for direct volume rendering. Comput Graph Forum 25(3):579–606, 2006

    Article  Google Scholar 

  201. Viola I, Feixas M, Sbert M, Gröller ME: Importance-driven focus of attention. IEEE Trans Vis Comput Graph 12(5):933–940, 2006

    Article  PubMed  Google Scholar 

  202. Wang C, Yu H, Ma K-L: Importance-driven time-varying data visualization. IEEE Trans Vis Comput Graph 14(6):1547–1554, 2008

    Article  PubMed  Google Scholar 

  203. Klein T, Strengert M, Stegmaier S, Ertl T: Exploiting frame-to-frame coherence for accelerating high-quality volume raycasting on graphics hardware. In: IEEE Visualization, 2005, pp 223–230

  204. Müller C, Strengert M, Ertl T: Optimized volume raycasting for graphics-hardware-based cluster systems. In: Eurographics Symposium on Parallel Graphics and Visualization (EGPGV06), Eurographics Association, 2006, pp 59–66

  205. Gobbetti E, Marton F, Guitián JAI: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. Vis Comput 24(7–9):797–806, 2008

    Article  Google Scholar 

  206. Moloney B, Weiskopf D, Möller T, Strengert M: Scalable sort-first parallel direct volume rendering with dynamic load balancing. In: Eurographics Symposium on Parallel Graphics and Visualization (EGPGV07), Eurographics Association, 2007, pp 45–52

  207. Fout N, Ma K-L: Transform coding for hardware-accelerated volume rendering. IEEE Trans Vis Comput Graph 13(6):1600–1607, 2007

    Article  PubMed  Google Scholar 

  208. Wang C, Garcia A, Shen H-W: Interactive level-of-detail selection using image-based quality metric for large volume visualization. IEEE Trans Vis Comput Graph 13(1):122–134, 2007

    Article  PubMed  Google Scholar 

  209. Levoy M: Volume rendering using the Fourier projection-slice theorem. In: Proc. of the Conf. on Graphics Interface ’92. Morgan Kaufmann, 1992, pp 61–69

  210. Malzbender T: Fourier volume rendering. ACM Trans Graph 12(3):233–250, 1993

    Article  Google Scholar 

  211. Napel S, Dunne S, Rutt BK: Fast Fourier projection for MR angiography. Magn Reson Med 19:393–405, 1991

    Article  PubMed  CAS  Google Scholar 

  212. Jansen T, von Rymon-Lipinski B, Hanssen N, Keeve E: Fourier volume rendering on the GPU using a Split-Stream-FFT. In: VMV, 2004, pp 395–403

  213. Boucheny C, Bonneau G-P, Droulez J, Thibault G, Ploix S: A perceptive evaluation of volume rendering techniques. ACM Trans Appl Percept 5(4):1–24, 2009

    Article  Google Scholar 

  214. Ibánez L, Schroeder W, Ng L, Cates J: The Insight Software Consortium, The ITK Software Guide, 2nd edition. Updated for itk version 2.4 (November 2005)

  215. Schroeder W, Martin K, Lorensen B: The Visualization Toolkit, 3rd edition. Kitware Inc., 2004

Download references

Acknowledgments

The authors would like to thank J. Moore, C. Wedlake, and Dr. U. Aladl for technical support and assistance; K. Wang and Dr. M. Wachowiak for valuable discussions and assistance; and Ms. J. Williams for editorial assistance. They would also like to thank the anonymous editors and reviewers. This project was supported by the Canadian Institutes for Health Research (Grant MOP 74626), the National Science and Engineering Research Council of Canada (Grant R314GA01), the Ontario Research and Development Challenge Fund, the Canadian Foundation for Innovation and the Ontario Innovation Trust, as well as the Graduate Scholarships from the Ontario Ministry of Education and the University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Eagleson, R. & Peters, T.M. Volume Visualization: A Technical Overview with a Focus on Medical Applications. J Digit Imaging 24, 640–664 (2011). https://doi.org/10.1007/s10278-010-9321-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-010-9321-6

Key words

Navigation