Skip to main content

Advertisement

Log in

Genetic and Chemical Models of Colorectal Cancer in Mice

  • Published:
Current Colorectal Cancer Reports

Abstract

Colorectal cancer (CRC) is a significant health concern because of its associated mortality. Most CRCs exhibit dysregulation of the Wnt signaling pathway, caused by mutational inactivation of the adenomatous polyposis coli tumor suppressor gene (APC) or mutational activation of β-catenin. Disease progression is accompanied by additional mutations in the KRAS oncogene and p53 tumor suppressor gene. Other CRCs are microsatellite unstable because of mutational inactivation or epigenetic silencing of key molecules responsible for DNA mismatch repair. This review focuses on several common mouse models of CRC, highlighting the consequences of germline mutation of the aforementioned tumor suppressor genes or proto-oncogenes. This article also discusses chemical carcinogens that adversely affect the intestinal tissues with formation of colorectal neoplasia in mice. These mouse models have significantly contributed to the understanding of the mechanisms responsible for CRC pathogenesis and also may serve as potential vehicles for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance •• Of major importance

  1. •• Clevers H: Wnt/beta-catenin signaling in development and disease. Cell 2006, 127:469–480. This review article expounds on the significance and importance of the Wnt signaling pathway, with its intermediates in development and regulation of several organ systems. The significance of the canonical pathway, particularly β-catenin, is discussed in detail. A dominant role for Wnt signaling in cancer also is analyzed.

    Article  PubMed  CAS  Google Scholar 

  2. Kinzler KW, Nilbert MC, Su LK, et al.: Identification of FAP locus genes from chromosome 5q21. Science 1991, 253:661–665.

    Article  PubMed  CAS  Google Scholar 

  3. Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 1996, 87:159–170.

    Article  PubMed  CAS  Google Scholar 

  4. Moser AR, Pitot HC, Dove WF: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990, 247:322–324.

    Article  PubMed  CAS  Google Scholar 

  5. Su LK, Kinzler KW, Vogelstein B, et al.: Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992, 256:668–670.

    Article  PubMed  CAS  Google Scholar 

  6. Moser AR, Shoemaker AR, Connelly CS, et al.: Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev Dyn 1995, 203:422–433.

    PubMed  CAS  Google Scholar 

  7. Luongo C, Moser AR, Gledhill S, et al.: Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res 1994, 54:5947–5952.

    PubMed  CAS  Google Scholar 

  8. Ichii S, Horii A, Nakatsuru S, et al.: Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum Mol Genet 1992, 1:387–390.

    Article  PubMed  CAS  Google Scholar 

  9. Shoemaker AR, Gould KA, Luongo C, et al.: Studies of neoplasia in the Min mouse. Biochim Biophys Acta 1997, 1332:F25–F48.

    PubMed  CAS  Google Scholar 

  10. Dietrich WF, Lander ES, Smith JS, et al.: Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 1993, 75:631–639.

    Article  PubMed  CAS  Google Scholar 

  11. Cormier RT, Bilger A, Lillich AJ, et al.: The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 2000, 19:3182–3192.

    Article  PubMed  CAS  Google Scholar 

  12. •• McCart AE, Vickaryous NK, Silver A: Apc mice: models, modifiers and mutants. Pathol Res Pract 2008, 204:479–490. This article presents a detailed review of the different Apc models in mice, especially the Min mice and their modifiers. Other models of Apc, including compound mice, are analyzed. Finally, the implications for Apc models in clinical trials are discussed.

    Article  PubMed  Google Scholar 

  13. Oshima M, Oshima H, Kitagawa K, et al.: Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci U S A 1995, 92:4482–4486.

    Article  PubMed  CAS  Google Scholar 

  14. Fodde R, Edelmann W, Yang K, et al.: A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci U S A 1994, 91:8969–8973.

    Article  PubMed  CAS  Google Scholar 

  15. Colnot S, Niwa-Kawakita M, Hamard G, et al.: Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab Invest 2004, 84:1619–1630.

    Article  PubMed  CAS  Google Scholar 

  16. Pollard P, Deheragoda M, Segditsas S, et al.: The Apc 1322T mouse develops severe polyposis associated with submaximal nuclear beta-catenin expression. Gastroenterology 2009, 136:2204–2213.e1–13.

    Article  PubMed  CAS  Google Scholar 

  17. Gaspar C, Franken P, Molenaar L, et al.: A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet 2009, 5:e1000547.

    Article  PubMed  CAS  Google Scholar 

  18. Shibata H, Toyama K, Shioya H, et al.: Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997, 278:120–123.

    Article  PubMed  CAS  Google Scholar 

  19. Saam JR, Gordon JI: Inducible gene knockouts in the small intestinal and colonic epithelium. J Biol Chem 1999, 274:38071–38082.

    Article  PubMed  CAS  Google Scholar 

  20. Pinto D, Robine S, Jaisser F, et al.: Regulatory sequences of the mouse villin gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small and large intestines. J Biol Chem 1999, 274:6476–6482.

    Article  PubMed  CAS  Google Scholar 

  21. Madison BB, Dunbar L, Qiao XT, et al.: Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem 2002, 277:33275–33283.

    Article  PubMed  CAS  Google Scholar 

  22. el Marjou F, Janssen KP, Chang BH, et al.: Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 2004, 39:186–193.

    Article  PubMed  CAS  Google Scholar 

  23. Ireland H, Kemp R, Houghton C, et al.: Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 2004, 126:1236–1246.

    Article  PubMed  CAS  Google Scholar 

  24. Sansom OJ, Reed KR, Hayes AJ, et al.: Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004, 18:1385–1390.

    Article  PubMed  CAS  Google Scholar 

  25. • Haigis KM, Kendall KR, Wang Y, et al.: Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 2008, 40:600–608. Differences between K-Ras and N-Ras mouse model phenotypes are discussed in this article. The authors researched a mouse model with compound Apc inactivation and K-Ras activation.

    Article  PubMed  CAS  Google Scholar 

  26. •• Phelps RA, Broadbent TJ, Stafforini DM, et al.: New perspectives on APC control of cell fate and proliferation in colorectal cancer. Cell Cycle 2009, 8:2549–2556. The failure of nuclear β-catenin accumulation in FAP patients led the authors to suggest a β-catenin-independent role for APC in early colon cancer. The authors discuss COX-2 and prostaglandin E 2 in this context of noncanonical APC function. They mine the literature and discuss APC functions in relation to the canonical Wnt signaling pathway.

    PubMed  Google Scholar 

  27. Romagnolo B, Berrebi D, Saadi-Keddoucci S, et al.: Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta-catenin. Cancer Res 1999, 59:3875–3879.

    PubMed  CAS  Google Scholar 

  28. Harada N, Tamai Y, Ishikawa T, et al.: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 1999, 18:5931–5942.

    Article  PubMed  CAS  Google Scholar 

  29. •• Lynch HT, Lynch PM, Lanspa SJ, et al.: Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 2009, 76:1–18. This article provides a complete background for hereditary colon cancer, specifically HNPCC, or Lynch syndrome. The authors discuss testing for HNPCC with careful consideration of several genetic mutations, screening, and surveillance. The article also analyzes different forms of non-HNPCC familial colon cancers.

    Article  PubMed  CAS  Google Scholar 

  30. Chung DC, Rustgi AK: The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med 2003, 138:560–570.

    PubMed  CAS  Google Scholar 

  31. Reitmair AH, Schmits R, Ewel A, et al.: MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet 1995, 11:64–70.

    Article  PubMed  CAS  Google Scholar 

  32. • Kucherlapati MH, Lee K, Nguyen AA, et al.: An Msh2 conditional knockout mouse for studying intestinal cancer and testing anti-cancer agents. Gastroenterology 2009 Nov 18 (Epub ahead of print). The authors discuss results from an intestine-specific knockout of a major mutS gene, Msh2, in mice. They claim to have generated a reliable model of HNPCC in mice.

  33. Edelmann W, Umar A, Yang K, et al.: The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res 2000, 60:803–807.

    PubMed  CAS  Google Scholar 

  34. Edelmann W, Yang K, Umar A, et al.: Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 1997, 91:467–477.

    Article  PubMed  CAS  Google Scholar 

  35. de Wind N, Dekker M, Claij N, et al.: HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 1999, 23:359–362.

    Article  PubMed  Google Scholar 

  36. •• Taketo MM, Edelmann W: Mouse models of colon cancer. Gastroenterology 2009, 136:780–798. This excellent review article discusses several mouse models of colon cancer, including models for FAP, HNPCC, and colon cancer in IBD. The authors review different mutS and mutL models of HNPCC, including knockout and knockin lines.

    Article  PubMed  CAS  Google Scholar 

  37. Edelmann W, Yang K, Kuraguchi M, et al.: Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res 1999, 59:1301–1307.

    PubMed  CAS  Google Scholar 

  38. Prolla TA, Baker SM, Harris AC, et al.: Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet 1998, 18:276–279.

    Article  PubMed  CAS  Google Scholar 

  39. Baker SM, Bronner CE, Zhang L, et al.: Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 1995, 82:309–319.

    Article  PubMed  CAS  Google Scholar 

  40. Chen PC, Dudley S, Hagen W, et al.: Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Res 2005, 65:8662–8670.

    Article  PubMed  CAS  Google Scholar 

  41. Donehower LA, Harvey M, Slagle BL, et al.: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992, 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  42. Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29:117–129.

    Article  PubMed  CAS  Google Scholar 

  43. • Trobridge P, Knoblaugh S, Washington MK, et al.: TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology 2009, 136:1680–1688. This study reports on Tgfbr2 and K-Ras mouse mutants. The authors report the presence of intestinal adenomas and neoplasia only in the presence of both activating K-Ras and inactivating Tgfbr2 mutations, but not individually. The authors also report the activation of β-catenin and its downstream targets in the compound mice.

    Article  PubMed  CAS  Google Scholar 

  44. Shull MM, Ormsby I, Kier AB, et al.: Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992, 359:693–699.

    Article  PubMed  CAS  Google Scholar 

  45. Engle SJ, Ormsby I, Pawlowski S, et al.: Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 2002, 62:6362–6366.

    PubMed  CAS  Google Scholar 

  46. Engle SJ, Hoying JB, Boivin GP, et al.: Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 1999, 59:3379–3386.

    PubMed  CAS  Google Scholar 

  47. Nomura M, Li E: Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 1998, 393:786–790.

    Article  PubMed  CAS  Google Scholar 

  48. Yang X, Li C, Xu X, et al.: The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 1998, 95:3667–3672.

    Article  PubMed  CAS  Google Scholar 

  49. Zhu Y, Richardson JA, Parada LF, et al.: Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998, 94:703–714.

    Article  PubMed  CAS  Google Scholar 

  50. Yang X, Letterio JJ, Lechleider RJ, et al.: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999, 18:1280–1291.

    Article  PubMed  CAS  Google Scholar 

  51. Takaku K, Miyoshi H, Matsunaga A, et al.: Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999, 59:6113–6117.

    PubMed  CAS  Google Scholar 

  52. Forrester K, Almoguera C, Han K, et al.: Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1987, 327:298–303.

    Article  PubMed  CAS  Google Scholar 

  53. Janssen KP, Abal M, El Marjou F, et al.: Mouse models of K-ras-initiated carcinogenesis. Biochim Biophys Acta 2005, 1756:145–154.

    PubMed  CAS  Google Scholar 

  54. Koera K, Nakamura K, Nakao K, et al.: K-ras is essential for the development of the mouse embryo. Oncogene 1997, 15:1151–1159.

    Article  PubMed  CAS  Google Scholar 

  55. Johnson L, Mercer K, Greenbaum D, et al.: Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001, 410:1111–1116.

    Article  PubMed  CAS  Google Scholar 

  56. Janssen KP, el-Marjou F, Pinto D, et al.: Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 2002, 123:492–504.

    Article  PubMed  CAS  Google Scholar 

  57. Tuveson DA, Shaw AT, Willis NA, et al.: Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 2004, 5:375–387.

    Article  PubMed  CAS  Google Scholar 

  58. • Sansom OJ, Meniel V, Wilkins JA, et al.: Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A 2006, 103:14122–14127. This article discusses tumorigenesis in intestine and kidneys in mice with compound loss of Apc along with K-Ras activation. The study found no implications of K-Ras activation independent of Apc loss.

    Article  PubMed  CAS  Google Scholar 

  59. Calcagno SR, Li S, Colon M, et al.: Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon. Int J Cancer 2008, 122:2462–2470.

    Article  PubMed  CAS  Google Scholar 

  60. Takeda K, Kaisho T, Akira S: Toll-like receptors. Annu Rev Immunol 2003, 21:335–376.

    Article  PubMed  CAS  Google Scholar 

  61. Adachi O, Kawai T, Takeda K, et al.: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998, 9:143–150.

    Article  PubMed  CAS  Google Scholar 

  62. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al.: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229–241.

    Article  PubMed  CAS  Google Scholar 

  63. Akira S: Toll-like receptors: lessons from knockout mice. Biochem Soc Trans 2000, 28:551–556.

    PubMed  CAS  Google Scholar 

  64. Fukata M, Chen A, Vamadevan AS, et al.: Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 2007, 133:1869–1881.

    Article  PubMed  CAS  Google Scholar 

  65. Hoshino K, Takeuchi O, Kawai T, et al.: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999, 162:3749–3752.

    PubMed  CAS  Google Scholar 

  66. Gewirtz AT, Navas TA, Lyons S, et al.: Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001, 167:1882–1885.

    PubMed  CAS  Google Scholar 

  67. • Vijay-Kumar M, Sanders CJ, Taylor RT, et al.: Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 2007, 117:3909–3921. This articles reports spontaneous colitis and robust proinflammatory cytokine expression in mice lacking Tlr5, which the authors suggest are the result of activation of Tlr4-specific responses.

    PubMed  CAS  Google Scholar 

  68. Kuhn R, Lohler J, Rennick D, et al.: Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993, 75:263–274.

    Article  PubMed  CAS  Google Scholar 

  69. Berg DJ, Davidson N, Kuhn R, et al.: Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 1996, 98:1010–1020.

    Article  PubMed  CAS  Google Scholar 

  70. Schultz M, Tonkonogy SL, Sellon RK, et al.: IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 1999, 276:G1461–G1472.

    PubMed  CAS  Google Scholar 

  71. Chawengsaksophak K, James R, Hammond VE, et al.: Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 1997, 386:84–87.

    Article  PubMed  CAS  Google Scholar 

  72. • Hinoi T, Akyol A, Theisen BK, et al.: Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 2007, 67:9721–9730. This article reports evidence of mouse colorectal carcinogenesis similar to a human FAP model. The authors show that loss of Apc driven by a Cdx2 promoter resulted in CRC.

    Article  PubMed  CAS  Google Scholar 

  73. Velcich A, Yang W, Heyer J, et al.: Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295:1726–1729.

    Article  PubMed  CAS  Google Scholar 

  74. •• Rosenberg DW, Giardina C, Tanaka T: Mouse models for the study of colon carcinogenesis. Carcinogenesis 2009, 30:183–196. This review recaps colon carcinogenesis driven by chemical carcinogens in rodents. It discusses several strains of mice and their sensitivities to different carcinogens. The article also analyzes the different genotypic and phenotypic changes arising from colon carcinogenesis.

    Article  PubMed  CAS  Google Scholar 

  75. Laqueur GL: Carcinogenic effects of cycad meal and cycasin, methylazoxymethanol glycoside, in rats and effects of cycasin in germfree rats. Fed Proc 1964, 23:1386–1388.

    PubMed  CAS  Google Scholar 

  76. Fiala ES: Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer 1977, 40:2436–2445.

    Article  PubMed  CAS  Google Scholar 

  77. Bolt AB, Papanikolaou A, Delker DA, et al.: Azoxymethane induces KI-ras activation in the tumor resistant AKR/J mouse colon. Mol Carcinog 2000, 27:210–218.

    Article  PubMed  CAS  Google Scholar 

  78. Jacoby RF, Llor X, Teng BB, et al.: Mutations in the K-ras oncogene induced by 1,2-dimethylhydrazine in preneoplastic and neoplastic rat colonic mucosa. J Clin Invest 1991, 87:624–630.

    Article  PubMed  CAS  Google Scholar 

  79. Maltzman T, Whittington J, Driggers L, et al.: AOM-induced mouse colon tumors do not express full-length APC protein. Carcinogenesis 1997, 18:2435–2439.

    Article  PubMed  CAS  Google Scholar 

  80. Takahashi M, Nakatsugi S, Sugimura T, et al.: Frequent mutations of the beta-catenin gene in mouse colon tumors induced by azoxymethane. Carcinogenesis 2000, 21:1117–1120.

    Article  PubMed  CAS  Google Scholar 

  81. Prescott SM, Fitzpatrick FA: Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta 2000, 1470:M69–M78.

    PubMed  CAS  Google Scholar 

  82. Dong M, Guda K, Nambiar PR, et al.: Inverse association between phospholipase A2 and COX-2 expression during mouse colon tumorigenesis. Carcinogenesis 2003, 24:307–315.

    Article  PubMed  CAS  Google Scholar 

  83. Guda K, Giardina C, Nambiar P, et al.: Aberrant transforming growth factor-beta signaling in azoxymethane-induced mouse colon tumors. Mol Carcinog 2001, 31:204–213.

    Article  PubMed  CAS  Google Scholar 

  84. Okayasu I, Yamada M, Mikami T, et al.: Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J Gastroenterol Hepatol 2002, 17:1078–1083.

    Article  PubMed  Google Scholar 

  85. Tanaka T, Kohno H, Suzuki R, et al.: A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 2003, 94:965–973.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grants DK52230, DK64399, and CA84197.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent W. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandan, M.O., Yang, V.W. Genetic and Chemical Models of Colorectal Cancer in Mice. Curr Colorectal Cancer Rep 6, 51–59 (2010). https://doi.org/10.1007/s11888-010-0046-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-010-0046-1

Keywords

Navigation