Skip to main content
Log in

Impact of the Mdm2SNP309-G allele on a murine model of colorectal cancer

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

A single-nucleotide polymorphism (SNP) in the promoter of the Mdm2 gene (Mdm2SNP309-G) results in an increased Mdm2 expression, partial attenuation of the p53 pathway and accelerated tumor development. Clinical case–control studies indicate the Mdm2SNP309-G allele associates with a significant increase in colorectal cancer (CRC) risk that is heightened in women, but the biological significance of this polymorphism has never been directly evaluated. To examine whether the Mdm2SNP309-G allele contributes to colorectal cancer, we generated cohorts of mice harboring either the G (minor allelic variant) or T (major allelic variant) allele and treated them with azoxymethane (AOM), a carcinogen that induces sporadic colorectal cancer. Mdm2SNP309-G/G mice displayed a significant reduction in survival following AOM treatment with more colonic lesions in a wider distribution throughout the lower and upper colon and an attenuated apoptotic response following exposure. AOM did not significantly induce stabilization of wild-type p53 or activate p53 downstream targets following AOM treatment, regardless of the genotype. Instead, Mdm2SNP309-G/G colons had significant changes in the expression of genes that regulate Mdm2 transcription (ERα and Sp1) as well as downstream targets of Mdm2. Together these results suggest the Mdm2SNP309-G allele significantly impacts CRC through mechanisms outside the p53 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. U.S. Department of Health and Human ServicesUnited States cancer statistics: 1999–2011 Cancer Incidence and Mortality Data; 1999–2011 [cited 2014; Available from: www.cdc.gov/uscs].

  2. Abdel-Fattah G, Yoffe B, Krishnan B, Khaoustov V, Itani K . MDM2/p53 protein expression in the development of colorectal adenocarcinoma. J Gastrointest Surg 2000; 4: 109–114.

    Article  CAS  Google Scholar 

  3. Mendrysa SM, McElwee MK, Michalowski J, O'Leary KA, Young KM, Perry ME . mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 2003; 23: 462–472.

    Article  CAS  Google Scholar 

  4. Pant V, Xiong S, Jackson JG, Post SM, Abbas HA, Quintas-Cardama A et al. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev 2013; 27: 1857–1867.

    Article  CAS  Google Scholar 

  5. Post SM, Quintas-Cardama A, Pant V, Iwakuma T, Hamir A, Jackson JG et al. A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell 2010; 18: 220–230.

    Article  CAS  Google Scholar 

  6. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591–602.

    Article  CAS  Google Scholar 

  7. Knappskog S, Bjørnslett M, Myklebust LM, Huijts PEA, Vreeswijk MP, Edvardsen H et al. The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell 2011; 19: 273–282.

    Article  CAS  Google Scholar 

  8. Bond GL, Menin C, Bertorelle R, Alhopuro P, Aaltonen LA, Levine AJ . MDM2 SNP309 accelerates colorectal tumour formation in women. J Med Genet 2006; 43: 950–952.

    Article  CAS  Google Scholar 

  9. Jin J, Wang Y, Wang J, Xu Y, Chen S, Wang J et al. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice. J Radiat Res 2014; 55: 443–450.

    Article  CAS  Google Scholar 

  10. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  Google Scholar 

  11. Bond GL, Hu W, Levine A . A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res 2005; 65: 5481–5484.

    Article  CAS  Google Scholar 

  12. Riley MF, Lozano G . The many faces of MDM2 binding partners. Genes Cancer 2012; 3: 226–239.

    Article  CAS  Google Scholar 

  13. Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 2006; 66: 5104–5110.

    Article  CAS  Google Scholar 

  14. Firoz EF, Warycha M, Zakrzewski J, Pollens D, Wang G, Shapiro R et al. Association of MDM2 SNP309, age of onset, and gender in cutaneous melanoma. Clin Cancer 2009; 15: 2573–2580.

    Article  CAS  Google Scholar 

  15. Lind H, Zienolddiny S, Ekstrøm PO, Skaug V, Haugen A . Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer 2006; 119: 718–721.

    Article  CAS  Google Scholar 

  16. Knappskog S, Trovik J, Marcickiewicz J, Tingulstad S, Staff AC, Romundstad P et al. SNP285C modulates oestrogen receptor/Sp1 binding to the MDM2 promoter and reduces the risk of endometrial but not prostatic cancer. Eur J Cancer 2012; 48: 1988–1996.

    Article  CAS  Google Scholar 

  17. Brekman A, Singh K, Polotskaia A, Kundu N, Bargonetti J . A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Res 2011; 13: R3.

    Article  CAS  Google Scholar 

  18. Hu W, Feng Z, Ma L, Wagner J, Rice JJ, Stolovitzky G et al. A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res 2007; 67: 2757–2765.

    Article  CAS  Google Scholar 

  19. Robertis MD ME, Poeta ML, Carotti S, Morini S, Cecchetelli L, Signori E et al. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog 2011; 10: 9.

    Article  Google Scholar 

  20. Hu Y, Le Leu RK, Young GP . Absence of acute apoptotic response to genotoxic carcinogens in p53-deficient mice is associated with increased susceptibility to azoxymethane-induced colon tumours. Int J Cancer 2005; 115: 561–567.

    Article  CAS  Google Scholar 

  21. Nambiar PR, Giardina C, Guda K, Aizu W, Raja R, Rosenberg DW . Role of the alternating reading frame (P19)-p53 pathway in an in vivo murine colon tumor model. Cancer Res 2002; 62: 3667–3674.

    CAS  PubMed  Google Scholar 

  22. Heijmans J, Wielenga MCB, Rosekrans SL, van Lidth de Jeude JF, Roelofs J, Groothuis P et al. Oestrogens promote tumorigenesis in a mouse model for colitis-associated cancer. Gut 2014; 63: 310–316.

    Article  CAS  Google Scholar 

  23. Armstrong CM, Billimek AR, Allred KF, Sturino JM, Weeks BR, Allred C . A novel shift in estrogen receptor expression occurs as estradiol suppresses inflammation-associated colon tumor formation. Endocr-Relat Cancer 2013; 20: 515–525.

    Article  CAS  Google Scholar 

  24. Chaar I, Arfaoui TA, El Amine el HO, Mahmoud LB, Khiari M, Sammoud S et al. Impact of MDM2 polymorphism: increased risk of developing colorectal cancer and a poor prognosis in the Tunisian population. Eur J Gastroenterol Hepatol 2012; 24: 320–327.

    Article  CAS  Google Scholar 

  25. Wang W, Du M, Gu D, Zhu L, Chu H, Tong N et al. MDM2 SNP309 polymorphism is associated with colorectal cancer risk. Sci Rep 2014; 4: 4851.

    Article  CAS  Google Scholar 

  26. Bissahoyo A, Pearsall RS, Hanlon K, Amann V, Hicks D, Godfrey VL et al. Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol Sci 2005; 88: 340–345.

    Article  CAS  Google Scholar 

  27. Ferreira K, Kreutz C, MacNelly S, Neubert K, Haber A, Bogyo M et al. Caspase-3 feeds back on caspase-8 Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis 2012; 17: 503–515.

    Article  CAS  Google Scholar 

  28. Lang GA, Iwakuma T, Suh Y-A, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  Google Scholar 

  29. Poole AJ, Heap D, Carroll RE, Tyner AL . Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene 2004; 23: 8128–8134.

    Article  CAS  Google Scholar 

  30. Itoh Y, Hayashi H, Miyazawa K, Kojima S, Akahoshi T, Onozaki K . 17β-estradiol induces IL-1α gene expression in rheumatoid fibroblast-like synovial cells through estrogen receptor α (ERα) and augmentation of transcriptional activity of Sp1 by dissociating histone deacetylase 2 from ERα. J Immunol 2007; 178: 3059–3066.

    Article  CAS  Google Scholar 

  31. Hwang HC, Clurman BE . Cyclin E in normal and neoplastic cell cycles. Oncogene 2005; 24: 2776–2786.

    Article  CAS  Google Scholar 

  32. Tien JC-Y, Xu J . Steroid receptor coactivator-3 as a potential molecular target for cancer therapy. Expert Opin Ther Targets 2012; 16: 1085–1096.

    Article  CAS  Google Scholar 

  33. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 2009 284. 13987–14000.

    Article  CAS  Google Scholar 

  34. Qin X, Peng Q, Tang W, Lao X, Chen Z, Lai H et al. An updated meta-analysis on the association of MDM2 SNP309 polymorphism with colorectal cancer risk. PLoS ONE 2013; 8: e76031.

    Article  CAS  Google Scholar 

  35. Greer EL, Brunet A . FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410–7425.

    Article  CAS  Google Scholar 

  36. Emerling BM, Weinberg F, Liu J-L, Mak TW, Chandel NS . PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci USA 2008; 105: 2622–2627.

    Article  CAS  Google Scholar 

  37. Modur V, Nagarajan R, Evers BM, Milbrandt J . FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression: implications for PTEN mutation in prostate cancer. J Biol Chem 2002; 277: 47928–47937.

    Article  CAS  Google Scholar 

  38. Saville B, Wormke M, Wang F, Nguyen T, Enmark E, Kuiper G et al. Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 2000; 275: 5379–5387.

    Article  CAS  Google Scholar 

  39. Wang F, Hoivik D, Pollenz R, Safe S . Functional and physical interactions between the estrogen receptor Sp1 and nuclear aryl hydrocarbon receptor complexes. Nucleic Acids Res 1998; 26: 3044–3052.

    Article  CAS  Google Scholar 

  40. Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H et al. Differential regulation of estrogen receptor α turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 2007; 67: 5513–5521.

    Article  CAS  Google Scholar 

  41. Kim K, Burghardt R, Barhoumi R, Lee S-o, Liu X, Safe S . MDM2 regulates estrogen receptor α and estrogen responsiveness in breast cancer cells. J Mol Endocrinol 2011; 46: 67–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferriere F, Habauzit D, Pakdel F, Saligaut C, Flouriot G . Unliganded estrogen receptor alpha promotes PC12 survival during serum starvation. PLoS ONE 2013; 8: e69081.

    Article  CAS  Google Scholar 

  43. Brendel A, Felzen V, Morawe T, Manthey D, Behl C . Differential regulation of apoptosis-associated genes by estrogen receptor alpha in human neuroblastoma cells. Restor Neurol Neurosci 2013; 31: 199–211.

    CAS  PubMed  Google Scholar 

  44. Barboza JA, Iwakuma T, Terzian T, El-Naggar AK, Lozano G . Mdm2 and Mdm4 loss regulates distinct p53 activities. Mol Cancer Res 2008; 6: 947–954.

    Article  CAS  Google Scholar 

  45. Spandidos A, Wang X, Wang H, Dragnev S, Thurber T, Seed B . A comprehensive collection of experimentally validated primers for polymerase chain reaction quantitation of murine transcript abundance. BMC Genomics 2008; 9: 633.

    Article  Google Scholar 

  46. James AW, Theologis AA, Brugmann SA, Xu Y, Carre AL, Leucht P et al. Estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion. PLoS ONE 2009; 4: e7120.

    Article  Google Scholar 

  47. Suh Y-A, Post SM, Elizondo-Fraire AC, Maccio DR, Jackson JG, El-Naggar AK et al. Multiple stress signals activate mutant p53 in vivo. Cancer Res 2011; 71: 7168–7175.

    Article  CAS  Google Scholar 

  48. Post SM, Quintas-Cardama A, Terzian T, Smith C, Eischen CM, Lozano G . p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene 2010; 29: 1260–1269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Maurisa Flynn-Croce and Brittany N Kleb for reviewing and editing the manuscript. These studies were supported by Cancer Center support grant CA016672 and funding from the Center for Genetics and Genomics and MDACC start-up funds to (SMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Post.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Pageon, L. & Post, S. Impact of the Mdm2SNP309-G allele on a murine model of colorectal cancer. Oncogene 34, 4412–4420 (2015). https://doi.org/10.1038/onc.2014.377

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.377

  • Springer Nature Limited

This article is cited by

Navigation