Skip to main content
Log in

Myocardial Fatigue: a Mechano-energetic Concept in Heart Failure

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review combines existing mechano-energetic principles to provide a refreshing perspective in heart failure (HF) and examine if the phenomenon of myocardial fatigue can be rigorously tested in vitro with current technological advances as a bridge between pre-clinical science and clinical practice.

Recent Findings

As a testament to the changing paradigm of HF pathophysiology, there has been a shift of focus from structural to functional causes, as reflected in its modern universal definition and redefined classification. Bolstered by recent landmark trials of sodium-glucose cotransport-2 inhibitors across the HF spectrum, there is a rekindled interest to revisit the basic physiological tenets of energetic efficiency, metabolic flexibility, and mechanical load on myocardial performance. Indeed, these principles are well established in the study of skeletal muscle fatigue. Since both striated muscles share similar sarcomeric building blocks, is it possible that myocardial fatigue can occur in the face of sustained adverse supra-physiological load as a functional cause of HF?

Summary

Myocardial fatigue is a mechano-energetic concept that offers a novel functional mechanism in HF. It is supported by current studies on exercise-induced cardiac fatigue and reverse translational science such as from recent landmark trials on sodium glucose co-transporter 2 inhibitors in HF. We propose a novel framework of myocardial fatigue, injury, and damage that aligns with the contemporary notion of HF as a continuous spectrum, helps determine the chance and trajectory of myocardial recovery, and aims to unify the plethora of cellular and molecular mechanisms in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

      •• Of major importance

      1. Kent-Braun JA, Fitts RH, Christie A. Skeletal muscle fatigue. Compr Physiol. 2012;2(2):997–1044.

        Article  PubMed  Google Scholar 

      2. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95(2):135–45.

        Article  CAS  PubMed  Google Scholar 

      3. HuxleY AF. Local activation of striated muscle from the frog and the crab. J Physiol. 1957;135(1):17–8P.

      4. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol. 1985;17(9):821–40.

        Article  CAS  PubMed  Google Scholar 

      5. O’Brien PJ, Shen H, Weiler J, Ianuzzo CD, Wittnich C, Moe GW, et al. Cardiac and muscle fatigue due to relative functional overload induced by excessive stimulation, hypersensitive excitation-contraction coupling, or diminished performance capacity correlates with sarcoplasmic reticulum failure. Can J Physiol Pharmacol. 1991;69(2):262–8.

        Article  CAS  PubMed  Google Scholar 

      6. Burkhoff D, de Tombe PP, Hunter WC, Kass DA. Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. Am J Physiol. 1991;260(2 Pt 2):H569–78.

        CAS  PubMed  Google Scholar 

      7. Sörensen J, Harms HJ, Aalen JM, Baron T, Smiseth OA, Flachskampf FA. Myocardial efficiency: a fundamental physiological concept on the verge of clinical impact. JACC Cardiovasc Imaging. 2020;13(7):1564–76.

        Article  PubMed  Google Scholar 

      8. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170–92.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      9. Ahmad T, Miller PE, McCullough M, Desai NR, Riello R, Psotka M, et al. Why has positive inotropy failed in chronic heart failure?. Lessons from prior inotrope trials. Eur J Heart Fail. 2019;21(9):1064–78.

        Article  PubMed  Google Scholar 

      10. Katz AM. Is the failing heart energy depleted?. Cardiol Clin. 1998;16(4):633-44,viii.

        Article  CAS  PubMed  Google Scholar 

      11. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21(4):402–24.

        Article  PubMed  Google Scholar 

      12. Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial dysfunction and heart disease: critical appraisal of an overlooked association. Int J Mol Sci. 2021;22(2).

      13. •• Tran P, Joshi M, Banerjee P. Concept of myocardial fatigue in reversible severe left ventricular systolic dysfunction from afterload mismatch: a case series. Eur Heart J Case Rep. 2021;5(3).This case series also offers a review on the potential mechanisms of myocardial recovery by addressing the afterload mismatch in hypertension and aortic stenosis and thus restoring the ventricular-arterial coupling, improving myocardial efficiency and relieving myocardial fatigue.

      14. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(4):422–34.

        Article  CAS  PubMed  Google Scholar 

      15. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

        CAS  PubMed  Google Scholar 

      16. Figtree GA, Rådholm K, Barrett TD, Perkovic V, Mahaffey KW, de Zeeuw D, et al. Effects of canagliflozin on heart failure outcomes associated with preserved and reduced ejection fraction in type 2 diabetes mellitus. Circulation. 2019;139(22):2591–3.

        Article  PubMed  Google Scholar 

      17. Packer M, Butler J, Zannad F, Filippatos G, Ferreira JP, Pocock SJ, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and a preserved ejection fraction: the EMPEROR-preserved trial. Circulation. 2021;144(16):1284–94.

      18. Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res. 2021;117(1):74–84.

        Article  CAS  PubMed  Google Scholar 

      19. Williams DM, Evans M. Dapagliflozin for heart failure with preserved ejection fraction: will the DELIVER study deliver?. Diabetes Ther. 2020;11(10):2207–19.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      20. Ross J. Mechanisms of cardiac contraction. What roles for preload, afterload and inotropic state in heart failure?. Eur Heart J. 1983;4(Suppl A):19–28.

        Article  PubMed  Google Scholar 

      21. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289(2):H501–12.

        Article  CAS  PubMed  Google Scholar 

      22. Muir WW, Hamlin RL. Myocardial contractility: historical and contemporary considerations. Front Physiol. 2020;11:222.

        Article  PubMed  PubMed Central  Google Scholar 

      23. Sonnenblick EH, Downing SE. Afterload as a primary determinat of ventricular performance. Am J Physiol. 1963;204:604–10.

        Article  CAS  PubMed  Google Scholar 

      24. Ross J, Franklin D, Sasayama S. Preload, afterload, and the role of afterload mismatch in the descending limb of cardiac function. Eur J Cardiol. 1976;4(Suppl):77–86.

        PubMed  Google Scholar 

      25. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift für Biologie 37: 483–526 (1899). J Mol Cell Cardiol. 1990;22(3):253–4.

        Article  CAS  PubMed  Google Scholar 

      26. Edes IF, Czuriga D, Csányi G, Chlopicki S, Recchia FA, Borbély A, et al. Rate of tension redevelopment is not modulated by sarcomere length in permeabilized human, murine, and porcine cardiomyocytes. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R20–9.

        Article  CAS  PubMed  Google Scholar 

      27. Schwinger RH, Böhm M, Koch A, Schmidt U, Morano I, Eissner HJ, et al. The failing human heart is unable to use the Frank-Starling mechanism. Circ Res. 1994;74(5):959–69.

        Article  CAS  PubMed  Google Scholar 

      28. Iribe G, Kaneko T, Yamaguchi Y, Naruse K. Load dependency in force-length relations in isolated single cardiomyocytes. Prog Biophys Mol Biol. 2014;115(2–3):103–14.

        Article  PubMed  Google Scholar 

      29. Bollensdorff C, Lookin O, Kohl P. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ‘Frank-Starling Gain’ index. Pflugers Arch. 2011;462(1):39–48.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      30. Han JC, Pham T, Taberner AJ, Loiselle DS, Tran K. Solving a century-old conundrum underlying cardiac force-length relations. Am J Physiol Heart Circ Physiol. 2019;316(4):H781–93.

        Article  CAS  PubMed  Google Scholar 

      31. De Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol. 1993;264(6 Pt 2):H1817–24.

        PubMed  Google Scholar 

      32. Burkhoff D. Pressure-volume loops in clinical research: a contemporary view. J Am Coll Cardiol. 2013;62(13):1173–6.

        Article  PubMed  Google Scholar 

      33. Iribe G, Helmes M, Kohl P. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol Heart Circ Physiol. 2007;292(3):H1487–97.

        Article  CAS  PubMed  Google Scholar 

      34. Helmes M, Najafi A, Palmer BM, Breel E, Rijnveld N, Iannuzzi D, et al. Mimicking the cardiac cycle in intact cardiomyocytes using diastolic and systolic force clamps; measuring power output. Cardiovasc Res. 2016;111(1):66–73.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      35. Giuliodori MJ, Lujan HL, Briggs WS, Palani G, DiCarlo SE. Hooke’s law: applications of a recurring principle. Adv Physiol Educ. 2009;33(4):293–6.

        Article  PubMed  Google Scholar 

      36. Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: myth, magic, or molecular target?. J Am Coll Cardiol. 2012;60(24):2465–72.

        Article  PubMed  PubMed Central  Google Scholar 

      37. Chung CS, Shmuylovich L, Kovács SJ. What global diastolic function is, what it is not, and how to measure it. Am J Physiol Heart Circ Physiol. 2015;309(9):H1392–406.

        Article  CAS  PubMed  Google Scholar 

      38. Robinson TF, Factor SM, Sonnenblick EH. The heart as a suction pump. Sci Am. 1986;254(6):84–91.

        Article  CAS  PubMed  Google Scholar 

      39. Helmes M, Trombitás K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ Res. 1996;79(3):619–26.

        Article  CAS  PubMed  Google Scholar 

      40. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47(2):131–41.

        Article  PubMed  Google Scholar 

      41. Barclay CJ. Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol. 1996;497(Pt 3):781–94.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      42. Westerhof N. Cardiac work and efficiency. Cardiovasc Res. 2000;48(1):4–7.

        Article  CAS  PubMed  Google Scholar 

      43. Taberner AJ, Han JC, Loiselle DS, Nielsen PM. An innovative work-loop calorimeter for in vitro measurement of the mechanics and energetics of working cardiac trabeculae. J Appl Physiol (1985). 2011;111(6):1798–803.

        Article  Google Scholar 

      44. Han JC, Tran K, Johnston CM, Nielsen PM, Barrett CJ, Taberner AJ, et al. Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat. Physiol Rep. 2014;2(11).

      45. Freeman GL. Effects of increased afterload on left ventricular function in closed-chest dogs. Am J Physiol. 1990;259(2 Pt 2):H619–25.

        CAS  PubMed  Google Scholar 

      46. Güvenç R, Aruğaslan E, Güvenç TS, Karadeniz F, Kaşıkçıoğlu H, Çam N. An Analysis of myocardial efficiency in patients with severe asymptomatic mitral regurgitation. J Cardiovasc Imaging. 2020;28(4):267–78.

        Article  PubMed  PubMed Central  Google Scholar 

      47. Shim CY, Hong GR, Ha JW. Ventricular stiffness and ventricular-arterial coupling in heart failure: what is it, how to assess, and why?. Heart Fail Clin. 2019;15(2):267–74.

        Article  PubMed  Google Scholar 

      48. Bastos MB, Burkhoff D, Maly J, Daemen J, den Uil CA, Ameloot K, et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur Heart J. 2020;41(12):1286–97.

        Article  PubMed  Google Scholar 

      49. Uriel N, Sayer G, Annamalai S, Kapur NK, Burkhoff D. Mechanical unloading in heart failure. J Am Coll Cardiol. 2018;72(5):569–80.

        Article  PubMed  Google Scholar 

      50. Banerjee P. Heart failure: a story of damage, fatigue and injury?. Open Heart. 2017;4(2):e000684.

        Article  PubMed  PubMed Central  Google Scholar 

      51. Wan JJ, Qin Z, Wang PY, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49(10):e384.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      52. Blair CA, Brundage EA, Thompson KL, Stromberg A, Guglin M, Biesiadecki BJ, et al. Heart failure in humans reduces contractile force in myocardium from both ventricles. JACC Basic Transl Sci. 2020;5(8):786–98.

        Article  PubMed  PubMed Central  Google Scholar 

      53. McDonald KS, Hanft LM, Robinett JC, Guglin M, Campbell KS. Regulation of myofilament contractile function in human donor and failing hearts. Front Physiol. 2020;11:468.

        Article  PubMed  PubMed Central  Google Scholar 

      54. Grassi B, Rossiter HB, Zoladz JA. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin?. Exerc Sport Sci Rev. 2015;43(2):75–83.

        Article  PubMed  Google Scholar 

      55. Hortemo KH, Munkvik M, Lunde PK, Sejersted OM. Multiple causes of fatigue during shortening contractions in rat slow twitch skeletal muscle. PLoS ONE. 2013;8(8):e71700.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      56. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

        Article  CAS  PubMed  Google Scholar 

      57. Glatz JFC, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJFP. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165579.

        Article  CAS  PubMed  Google Scholar 

      58. Ambardekar AV, Walker JS, Walker LA, Cleveland JC, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–32.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      59. Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation. 1998;97(23):2316–22.

        Article  CAS  PubMed  Google Scholar 

      60. Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 2012;740:1145–74.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      61. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009;81(3):412–9.

        Article  CAS  PubMed  Google Scholar 

      62. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R585–93.

        Article  CAS  PubMed  Google Scholar 

      63. Schotola H, Sossalla ST, Renner A, Gummert J, Danner BC, Schott P, et al. The contractile adaption to preload depends on the amount of afterload. ESC Heart Fail. 2017;4(4):468–78.

        Article  PubMed  PubMed Central  Google Scholar 

      64. Dawson E, George K, Shave R, Whyte G, Ball D. Does the human heart fatigue subsequent to prolonged exercise?. Sports Med. 2003;33(5):365–80.

        Article  PubMed  Google Scholar 

      65. Oxborough D, Birch K, Shave R, George K. “Exercise-induced cardiac fatigue”–a review of the echocardiographic literature. Echocardiography. 2010;27(9):1130–40.

        Article  PubMed  Google Scholar 

      66. Kleinnibbelink G, van Dijk APJ, Fornasiero A, Speretta GF, Johnson C, Hopman MTE, et al. Exercise-induced cardiac fatigue after a 45-min bout of high-intensity running exercise is not altered under hypoxia. J Am Soc Echocardiogr. 2021.

      67. Douglas PS, O’Toole ML, Hiller WD, Hackney K, Reichek N. Cardiac fatigue after prolonged exercise. Circulation. 1987;76(6):1206–13.

        Article  CAS  PubMed  Google Scholar 

      68. Sengupta SP, Mahure C, Mungulmare K, Grewal HK, Bansal M. Myocardial fatigue in recreational marathon runners: a speckle-tracking echocardiography study. Indian Heart J. 2018;70(Suppl 3):S229–34.

        Article  PubMed  PubMed Central  Google Scholar 

      69. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL Jr. Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(11):1324–40.

        Article  PubMed  Google Scholar 

      70. Berezin AE, Berezin AA, Lichtenauer M. Myokines and heart failure: challenging role in adverse cardiac remodeling, myopathy, and clinical outcomes. Dis Markers. 2021;2021:6644631.

        Article  PubMed  PubMed Central  CAS  Google Scholar 

      71. • Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019;40(26):2155–63. This provides a contemporary way of understanding heart failure as a spectrum which fits well with our proposed framework of myocardial injury, fatigue, and damage.

        Article  PubMed  PubMed Central  Google Scholar 

      72. Schiattarella GG, Tong D, Hill JA. Can HFpEF and HFrEF coexist?. Circulation. 2020;141(9):709–11.

        Article  PubMed  PubMed Central  Google Scholar 

      73. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54(1):36–46.

        Article  PubMed  Google Scholar 

      74. Carabello BA. Aortic stenosis: from pressure overload to heart failure. Heart Fail Clin. 2006;2(4):435–42.

        Article  PubMed  Google Scholar 

      75. Pitoulis FG, Nunez-Toldra R, Xiao K, Kit-Anan W, Mitzka S, Jabbour RJ, et al. Remodelling of adult cardiac tissue subjected to physiological and pathological mechanical load in vitro. Cardiovasc Res. 2021.

      76. Sasayama S, Ross J, Franklin D, Bloor CM, Bishop S, Dilley RB. Adaptations of the left ventricle to chronic pressure overload. Circ Res. 1976;38(3):172–8.

        Article  CAS  PubMed  Google Scholar 

      77. Güçlü A, Knaapen P, Harms HJ, Vonk AB, Stooker W, Groepenhoff H, et al. Myocardial efficiency is an important determinant of functional improvement after aortic valve replacement in aortic valve stenosis patients: a combined PET and CMR study. Eur Heart J Cardiovasc Imaging. 2015;16(8):882–9.

        Article  PubMed  Google Scholar 

      78. Peterzan MA, Clarke WT, Lygate CA, Lake HA, Lau JYC, Miller JJ, et al. Cardiac energetics in patients with aortic stenosis and preserved versus reduced ejection fraction. Circulation. 2020;141(24):1971–85.

        Article  PubMed  PubMed Central  Google Scholar 

      79. Ingwall J. On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Curr Hypertens Rep. 2006;8(6):457–64.

        Article  CAS  PubMed  Google Scholar 

      80. Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, et al. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol. 2018;116:106–14.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      81. Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med. 2018;5:68.

        Article  PubMed  PubMed Central  CAS  Google Scholar 

      82. Sopariwala DH, Pant M, Shaikh SA, Goonasekera SA, Molkentin JD, Weisleder N, et al. Sarcolipin overexpression improves muscle energetics and reduces fatigue. J Appl Physiol (1985). 2015;118(8):1050–8.

      83. Neubauer S. The failing heart–an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.

        Article  PubMed  Google Scholar 

      84. Gabr RE, El-Sharkawy AM, Schär M, Panjrath GS, Gerstenblith G, Weiss RG, et al. Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study. J Cardiovasc Magn Reson. 2018;20(1):81.

        Article  PubMed  PubMed Central  Google Scholar 

      85. Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54(5):402–9.

        Article  PubMed  Google Scholar 

      86. Karwi QG, Biswas D, Pulinilkunnil T, Lopaschuk GD. Myocardial ketones metabolism in heart failure. J Card Fail. 2020;26(11):998–1005.

      87. Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation. 2007;115(7):918–27.

        Article  PubMed  Google Scholar 

      88. AbouEzzeddine OF, Kemp BJ, Borlaug BA, Mullan BP, Behfar A, Pislaru SV, et al. Myocardial energetics in heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(10):e006240.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      89. Edwards LM, Tyler DJ, Kemp GJ, Dwyer RM, Johnson A, Holloway CJ, et al. The reproducibility of 31-phosphorus MRS measures of muscle energetics at 3 Tesla in trained men. PLoS ONE. 2012;7(6):e37237.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      90. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89.

        Article  PubMed  PubMed Central  Google Scholar 

      91. Xu Y, Li W, Wan K, Liang Y, Jiang X, Wang J, et al. Myocardial tissue reverse remodeling after guideline-directed medical therapy in idiopathic dilated cardiomyopathy. Circ Heart Fail. 2021;14(1):e007944.

        Article  PubMed  Google Scholar 

      92. Trivedi RK, Polhemus DJ, Li Z, Yoo D, Koiwaya H, Scarborough A, et al. Combined angiotensin receptor-neprilysin inhibitors improve cardiac and vascular function via increased NO bioavailability in heart failure. J Am Heart Assoc. 2018;7(5):e008268.

      93. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44.

        Article  PubMed  PubMed Central  Google Scholar 

      94. Han JC, Goo S, Barrett CJ, Mellor KM, Taberner AJ, Loiselle DS. The afterload-dependent peak efficiency of the isolated working rat heart is unaffected by streptozotocin-induced diabetes. Cardiovasc Diabetol. 2014;13:4.

        Article  PubMed  PubMed Central  CAS  Google Scholar 

      95. Kockskämper J, von Lewinski D, Khafaga M, Elgner A, Grimm M, Eschenhagen T, et al. The slow force response to stretch in atrial and ventricular myocardium from human heart: functional relevance and subcellular mechanisms. Prog Biophys Mol Biol. 2008;97(2–3):250–67.

        Article  PubMed  PubMed Central  CAS  Google Scholar 

      96. Edsall JT, Hunt HB, Read WP, Redfield AC. The anaerobic fatigue of cardiac muscle and the effect of temperature, cyanide, and adrenalin upon its development. J Cell Comp Physiol. 1932;1(3):475–501.

        Article  CAS  Google Scholar 

      97. Fletcher S, Maddock H, James RS, Wallis R, Gharanei M. The cardiac work-loop technique: an in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles. Sci Rep. 2020;10(1):5258.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      98. Tran K, Han JC, Crampin EJ, Taberner AJ, Loiselle DS. Experimental and modelling evidence of shortening heat in cardiac muscle. J Physiol. 2017;595(19):6313–26.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      99. Sugimoto T, Allison JL, Guyton AC. Effect of maximal work load on cardiac function. Jpn Heart J. 1973;14(2):146–53.

        Article  CAS  PubMed  Google Scholar 

      100. Schipper IB, Steendijk P, Klautz RJ, van der Velde ET, Baan J. Cardiac sympathetic denervation does not change the load dependence of the left ventricular end-systolic pressure/volume relationship in dogs. Pflugers Arch. 1993;425(5–6):426–33.

        Article  CAS  PubMed  Google Scholar 

      101. Brixius K, Hoischen S, Reuter H, Lasek K, Schwinger RH. Force/shortening-frequency relationship in multicellular muscle strips and single cardiomyocytes of human failing and nonfailing hearts. J Card Fail. 2001;7(4):335–41.

        Article  CAS  PubMed  Google Scholar 

      102. Hirt MN, Sörensen NA, Bartholdt LM, Boeddinghaus J, Schaaf S, Eder A, et al. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Res Cardiol. 2012;107(6):307.

        Article  PubMed  PubMed Central  Google Scholar 

      103. Mannacio V, Guadagno E, Mannacio L, Cervasio M, Antignano A, Mottola M, et al. Comparison of left ventricular myocardial structure and function in patients with aortic stenosis and those with pure aortic regurgitation. Cardiology. 2015;132(2):111–8.

        Article  PubMed  Google Scholar 

      104. Brixius K, Reuter H, Bloch W, Schwinger RH. Altered hetero- and homeometric autoregulation in the terminally failing human heart. Eur J Heart Fail. 2005;7(1):29–35.

        Article  PubMed  Google Scholar 

      105. Høydal MA, Kirkeby-Garstad I, Karevold A, Wiseth R, Haaverstad R, Wahba A, et al. Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure. ESC Heart Fail. 2018;5(3):332–42.

        Article  PubMed  PubMed Central  Google Scholar 

      106. Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C, et al. Western diet-fed, aortic-banded ossabaw swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl Sci. 2019;4(3):404–21.

        Article  PubMed  PubMed Central  Google Scholar 

      Download references

      Author information

      Authors and Affiliations

      Authors

      Corresponding author

      Correspondence to Patrick Tran.

      Ethics declarations

      Conflict of Interest

      The authors declare that they have no conflict of interest.

      Human and Animal Rights and Informed Consent

      This article does not contain any studies with human or animal subjects performed by any of the authors.

      Additional information

      Publisher's Note

      Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

      This article is part of the Topical Collection on Heart Failure

      Rights and permissions

      Reprints and permissions

      About this article

      Check for updates. Verify currency and authenticity via CrossMark

      Cite this article

      Tran, P., Maddock, H. & Banerjee, P. Myocardial Fatigue: a Mechano-energetic Concept in Heart Failure. Curr Cardiol Rep 24, 711–730 (2022). https://doi.org/10.1007/s11886-022-01689-2

      Download citation

      • Accepted:

      • Published:

      • Issue Date:

      • DOI: https://doi.org/10.1007/s11886-022-01689-2

      Keywords

      Navigation