Skip to main content

Advertisement

Log in

Dyslipidemia Profiles in Patients with Peripheral Artery Disease

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review of the literature aims to discuss the evidence linking different lipid and apolipoprotein measures to peripheral artery disease.

Recent Findings

Measures of atherogenic dyslipidemia, including elevations in total cholesterol and total cholesterol/high-density lipoprotein cholesterol as well as low levels of high-density lipoprotein cholesterol, are strongly associated with future risk of peripheral artery disease. Compared to coronary artery disease, there are fewer data showing an association between low-density lipoprotein cholesterol and future risk of peripheral artery disease. Novel lipid measures, including nuclear magnetic resonance-derived lipoproteins and oxidized lipids, may lead to better assessments of future peripheral artery disease risk.

Summary

These data highlight the important differences between lipid risk factors for peripheral and coronary artery disease. Improved understanding of these distinctions may lead to new therapeutic options for patients with peripheral artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:•• Of major importance

  1. Hiatt WR, Goldstone J, Smith SC Jr, McDermott M, Moneta G, Oka R, et al. Atherosclerotic peripheral vascular disease symposium II: nomenclature for vascular diseases. Circulation. 2008;118:2826–9. https://doi.org/10.1161/circulationaha.108.191171.

    Article  PubMed  Google Scholar 

  2. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329–40. https://doi.org/10.1016/S0140-6736(13)61249-0.

    Article  PubMed  Google Scholar 

  3. Criqui MH, Vargas V, Denenberg JO, Ho E, Allison M, Langer RD, et al. Ethnicity and peripheral arterial disease: the San Diego Population Study. Circulation. 2005;112:2703–7. https://doi.org/10.1161/CIRCULATIONAHA.105.546507.

    Article  PubMed  Google Scholar 

  4. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116:1509–26. https://doi.org/10.1161/CIRCRESAHA.116.303849.

    Article  CAS  PubMed  Google Scholar 

  5. Murabito JM, D'Agostino RB, Silbershatz H, Wilson WF. Intermittent claudication. A risk profile from the Framingham Heart Study. Circulation. 1997;96:44–9. https://doi.org/10.1161/01.CIR.96.1.44.

    Article  CAS  PubMed  Google Scholar 

  6. Murabito JM, Evans JC, Nieto K, Larson MG, Levy D, Wilson PW. Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study. Am Heart J. 2002;143:961–5. https://doi.org/10.1067/mhj.2002.122871.

    Article  PubMed  Google Scholar 

  7. Newman AB, Siscovick DS, Manolio TA, Polak J, Fried LP, Borhani NO, et al. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation. 1993;88:837–45. https://doi.org/10.1161/01.CIR.88.3.837.

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy M, Solomon C, Manolio TA, Criqui MH, Newman AB, Polak JF, et al. Risk factors for declining ankle-brachial index in men and women 65 years or older: the Cardiovascular Health Study. Arch Intern Med. 2005;165:1896–902. https://doi.org/10.1001/archinte.165.16.1896.

    Article  PubMed  Google Scholar 

  9. Meijer WT, Grobbee DE, Hunink MG, Hofman A, Hoes AW. Determinants of peripheral arterial disease in the elderly: the Rotterdam study. Arch Intern Med. 2000;160:2934–8. https://doi.org/10.1001/archinte.160.19.2934.

    Article  CAS  PubMed  Google Scholar 

  10. Allison MA, Criqui MH, McClelland RL, Scott JM, McDermott MM, Liu K, et al. The effect of novel cardiovascular risk factors on the ethnic-specific odds for peripheral arterial disease in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2006;48:1190–7. https://doi.org/10.1016/j.jacc.2006.05.049.

    Article  PubMed  Google Scholar 

  11. Fowkes FG, Housley E, Riemersma RA, Macintyre CC, Cawood EH, Prescott RJ, et al. Smoking, lipids, glucose intolerance, and blood pressure as risk factors for peripheral atherosclerosis compared with ischemic heart disease in the Edinburgh artery study. Am J Epidemiol. 1992;135:331–40. https://doi.org/10.1093/oxfordjournals.aje.a116294.

    Article  CAS  PubMed  Google Scholar 

  12. Ingolfsson IO, Sigurdsson G, Sigvaldason H, Thorgeirsson G, Sigfusson N. A marked decline in the prevalence and incidence of intermittent claudication in Icelandic men 1968-1986: a strong relationship to smoking and serum cholesterol--the Reykjavik study. J Clin Epidemiol. 1994;47:1237–43. https://doi.org/10.1016/0895-4356(94)90128-7.

    Article  CAS  PubMed  Google Scholar 

  13. Bowlin SJ, Medalie JH, Flocke SA, Zyzanski SJ, Goldbourt U. Epidemiology of intermittent claudication in middle-aged men. Am J Epidemiol. 1994;140:418–30.

    Article  CAS  PubMed  Google Scholar 

  14. Curb JD, Masaki K, Rodriguez BL, Abbott RD, Burchfiel CM, Chen R, et al. Peripheral artery disease and cardiovascular risk factors in the elderly. The Honolulu Heart Program. Arterioscler Thromb Vasc Biol. 1996;16:1495–500. https://doi.org/10.1016/j.jvs.2007.03.034.

    Article  CAS  PubMed  Google Scholar 

  15. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA. 2001;285:2481–5. https://doi.org/10.1001/jama.285.19.2481.

    Article  CAS  PubMed  Google Scholar 

  16. Pradhan AD, Shrivastava S, Cook NR, Rifai N, Creager MA, Ridker PM. Symptomatic peripheral arterial disease in women: nontraditional biomarkers of elevated risk. Circulation. 2008;117:823–31. https://doi.org/10.1161/CIRCULATIONAHA.107.719369.

    Article  PubMed  Google Scholar 

  17. Aday AW, Lawler PR, Cook NR, Ridker PM, Mora S, Pradhan AD. Lipoprotein particle profiles, standard lipids, and peripheral artery disease incidence—prospective data from the Women’s Health Study. Circulation. 2018;138:2330–41. https://doi.org/10.1161/circulationaha.118.035432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joosten MM, Pai JK, Bertoia ML, Rimm EB, Spiegelman D, Mittleman MA, et al. Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA. 2012;308:1660–7. https://doi.org/10.1001/jama.2012.13415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bainton D, Sweetnam P, Baker I, Elwood P. Peripheral vascular disease: consequence for survival and association with risk factors in the Speedwell prospective heart disease study. Br Heart J. 1994;72:128–32. https://doi.org/10.1136/hrt.72.2.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith I, Franks PJ, Greenhalgh RM, Poulter NR, Powell JT. The influence of smoking cessation and hypertriglyceridaemia on the progression of peripheral arterial disease and the onset of critical ischaemia. Eur J Vasc Endovasc Surg. 1996;11:402–8. https://doi.org/10.1016/S1078-5884(96)80170-5.

    Article  CAS  PubMed  Google Scholar 

  21. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135:e726–79. https://doi.org/10.1161/CIR.0000000000000471.

    Article  PubMed  Google Scholar 

  22. Millan J, Pinto X, Munoz A, Zuniga M, Rubies-Prat J, Pallardo LF, et al. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009;5:757–65. https://doi.org/10.2147/VHRM.S6269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mowat BF, Skinner ER, Wilson HM, Leng GC, Fowkes FG, Horrobin D. Alterations in plasma lipids, lipoproteins and high density lipoprotein subfractions in peripheral arterial disease. Atherosclerosis. 1997;131:161–6. https://doi.org/10.1016/S0021-9150(97)06097-8.

    Article  CAS  PubMed  Google Scholar 

  24. Katsilambros NL, Tsapogas PC, Arvanitis MP, Tritos NA, Alexiou ZP, Rigas KL. Risk factors for lower extremity arterial disease in non-insulin-dependent diabetic persons. Diabet Med. 1996;13:243–6. https://doi.org/10.1002/(sici)1096-9136(199603)13:3<243::Aid-dia69>3.0.Co;2-u.

    Article  CAS  PubMed  Google Scholar 

  25. Meade T, Zuhrie R, Cook C, Cooper J. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ. 2002;325:1139. https://doi.org/10.1136/bmj.325.7373.1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  27. Mora S, Rifai N, Buring JE, Ridker PM. Comparison of LDL cholesterol concentrations by Friedewald calculation and direct measurement in relation to cardiovascular events in 27,331 women. Clin Chem. 2009;55:888–94. https://doi.org/10.1373/clinchem.2008.117929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95. https://doi.org/10.1056/NEJMra043430.

    Article  CAS  PubMed  Google Scholar 

  29. Ness J, Aronow WS, Ahn C. Risk factors for symptomatic peripheral arterial disease in older persons in an academic hospital-based geriatrics practice. J Am Geriatr Soc. 2000;48:312–4. https://doi.org/10.1111/j.1532-5415.2000.tb02652.x.

    Article  CAS  PubMed  Google Scholar 

  30. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325:373–81. https://doi.org/10.1056/nejm199108083250601.

    Article  CAS  PubMed  Google Scholar 

  31. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9. https://doi.org/10.1161/CIRCULATIONAHA.108.816181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation. 2005;112:3375–83. https://doi.org/10.1161/circulationaha.104.532499.

    Article  CAS  PubMed  Google Scholar 

  33. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE. Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA. 2005;294:326–33. https://doi.org/10.1001/jama.294.3.326.

    Article  CAS  PubMed  Google Scholar 

  34. Arsenault BJ, Rana JS, Stroes ES, Despres JP, Shah PK, Kastelein JJ, et al. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol. 2009;55:35–41. https://doi.org/10.1016/j.jacc.2009.07.057.

    Article  CAS  PubMed  Google Scholar 

  35. Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017;39:763–816. https://doi.org/10.1093/eurheartj/ehx095.

    Article  Google Scholar 

  36. Pedersen TR, Kjekshus J, Pyorala K, Olsson AG, Cook TJ, Musliner TA, et al. Effect of simvastatin on ischemic signs and symptoms in the Scandinavian simvastatin survival study (4S). Am J Cardiol. 1998;81:333–5. https://doi.org/10.1016/S0002-9149(97)00904-1.

    Article  CAS  PubMed  Google Scholar 

  37. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9. https://doi.org/10.1016/S0140-6736(94)90566-5.

    Article  Google Scholar 

  38. Heart Protection Study Collaborative Group. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J Vasc Surg. 2007;45:645–54. https://doi.org/10.1016/j.jvs.2006.12.054.

    Article  Google Scholar 

  39. Arya S, Khakharia A, Binney ZO, DeMartino RR, Brewster LP, Goodney PP, et al. Association of statin dose with amputation and survival in patients with peripheral artery disease. Circulation. 2018;137:1435–46. https://doi.org/10.1161/CIRCULATIONAHA.117.032361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  41. •• Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation. 2017;137:338–50. https://doi.org/10.1161/CIRCULATIONAHA.117.032235 CIRCULATIONAHA.117.032235. This study showed that treatment with evolocumab, a monoclonal antibody against PCSK9, reduces not only cardiovascular but also limb-related events in a high-risk patient population.

    Article  CAS  PubMed  Google Scholar 

  42. Duffield RG, Lewis B, Miller NE, Jamieson CW, Brunt JN, Colchester AC. Treatment of hyperlipidaemia retards progression of symptomatic femoral atherosclerosis. A randomised controlled trial. Lancet. 1983;2:639–42. https://doi.org/10.1016/S0140-6736(83)92527-8.

    Article  CAS  PubMed  Google Scholar 

  43. Blankenhorn DH, Azen SP, Crawford DW, Nessim SA, Sanmarco ME, Selzer RH, et al. Effects of colestipol-niacin therapy on human femoral atherosclerosis. Circulation. 1991;83:438–47. https://doi.org/10.1097/00008483-199111000-00016.

    Article  CAS  PubMed  Google Scholar 

  44. Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL, Campbell GS, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med. 1990;323:946–55. https://doi.org/10.1056/nejm199010043231404.

    Article  CAS  PubMed  Google Scholar 

  45. Feingold KR, Grunfeld C. Introduction to lipids and lipoproteins. South Dartmouth, MA: MDText.com, Inc.; 2018. Accessed 10/1/2018

  46. Gardner AW, Alaupovic P, Parker DE, Montgomery PS, Roof A, Casanegra AI. Apolipoprotein profiles in subjects with and without peripheral artery disease. Vasc Med. 2013;18:129–35. https://doi.org/10.1177/1358863x13489768.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Diaz MN, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med. 1997;337:408–16. https://doi.org/10.1056/nejm199708073370607.

    Article  CAS  PubMed  Google Scholar 

  48. Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478. https://doi.org/10.1152/physrev.00047.2003.

    Article  CAS  PubMed  Google Scholar 

  49. Smith FB, Lowe GD, Fowkes FG, Rumley A, Rumley AG, Donnan PT, et al. Smoking, haemostatic factors and lipid peroxides in a population case control study of peripheral arterial disease. Atherosclerosis. 1993;102:155–62. https://doi.org/10.1016/0021-9150(93)90157-P.

    Article  CAS  PubMed  Google Scholar 

  50. Bergmark C, Wu R, de Faire U, Lefvert AK, Swedenborg J. Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL. Arterioscler Thromb Vasc Biol. 1995;15:441–5. https://doi.org/10.1161/01.ATV.15.4.441.

    Article  CAS  PubMed  Google Scholar 

  51. Tsimikas S, Kiechl S, Willeit J, Mayr M, Miller ER, Kronenberg F, et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J Am Coll Cardiol. 2006;47:2219–28. https://doi.org/10.1016/j.jacc.2006.03.001.

    Article  CAS  PubMed  Google Scholar 

  52. Bertoia ML, Pai JK, Lee JH, Taleb A, Joosten MM, Mittleman MA, et al. Oxidation-specific biomarkers and risk of peripheral artery disease. J Am Coll Cardiol. 2013;61:2169–79. https://doi.org/10.1016/j.jacc.2013.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk prediction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Aaron W. Aday reports funding from the NIH (Award Number K12 HL133117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan M. Everett.

Ethics declarations

Conflict of Interest

Aaron W. Aday declares that he has no conflict of interest.

Brendan M. Everett is a co-investigator and chair of the clinical endpoints committee for the PROMINENT trial. He also reports grants and personal fees from Novartis, and personal fees from Amgen, NIDDK, Roche Diagnostics, U.S. FDA, and UpToDate.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aday, A.W., Everett, B.M. Dyslipidemia Profiles in Patients with Peripheral Artery Disease. Curr Cardiol Rep 21, 42 (2019). https://doi.org/10.1007/s11886-019-1129-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1129-5

Keywords

Navigation