Skip to main content

Advertisement

Log in

Role of Cardiac Magnetic Resonance Imaging in Myocardial Infarction

  • Cardiac PET, CT, and MRI (F Pugliese and SE Petersen, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of the present paper is to analytically review the diagnostic and prognostic role of CMR in ST-segment elevation myocardial infarction (STEMI) survivors. Percutaneous coronary intervention (PCI) is the treatment of choice in patients STEMI. However, risk of future events remains substantial. Assessment of the extent of myocardial infarction (MI), cardiac function and ventricular remodelling has become the focus of recent studies. Electrocardiography, angiography and echocardiography parameters, as well as risk scores, lack sensitivity and reproducibility in predicting future cardiovascular events. A major advantage of cardiac magnetic resonance imaging (CMR) is that it provides myocardial tissue characterization.

Recent Findings

CMR is able to quantify both reversible and irreversible myocardial injury and correlates with future events.

Summary

This review will illustrate how microvascular function indices (myocardial salvage index, presence and amount of microvascular obstruction and intramyocardial haemorrhage) detectable by CMR add prognostic information and could impact on future strategies to improve outcomes in revascularized patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315. doi:10.1093/eurheartj/ehv320.

    Article  PubMed  Google Scholar 

  2. Jimenez-Candil J, Diaz-Castro O, Barrabes JA, García de la Villa B, Bodí Peris V, López Palop R, et al. Update on ischemic heart disease and critical care cardiology. Rev Esp Cardiol. 2013;66:198–204. doi:10.1016/j.rec.2012.10.015.

    Article  PubMed  Google Scholar 

  3. Kloner RA, Ganote CE, Jennings RB. The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–508. doi:10.1172/JCI107898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eitel I, Thiele H. Prognostic role of CMR imaging in myocardial infarction. J Am Coll Cardiol. 2014;64:2069. doi:10.1016/j.jacc.2014.05.078.

    Article  PubMed  Google Scholar 

  5. Woo JS, Yu TK, Kim WS, Kim KS, Kim W. Early prediction of myocardial viability after acute myocardial infarction by two-dimensional speckle tracking imaging. J Geriatr Cardiol. 2015;12:474–81. doi:10.11909/j.issn.1671-5411.2015.05.002.

    PubMed  PubMed Central  Google Scholar 

  6. Pontone G, Andreini D, Baggiano A, Bertella E, Mushtaq S, Conte E, et al. Functional relevance of coronary artery disease by cardiac magnetic resonance and cardiac computed tomography: myocardial perfusion and fractional flow reserve. Biomed Res Int. 2015;2015:297696. doi:10.1155/2015/297696.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pontone G, Andreini D, Guaricci AI, Rota C, Guglielmo M, Mushtaq S et al. The strategy study (stress cardiac magnetic resonance versus computed tomography coronary angiography for the management of symptomatic revascularized patients). Circ Cardiovas Imaging. 2016;pii: e005171. doi:10.1161/CIRCIMAGING.116.005171.

  8. Pontone G, Andreini D, Bertella E, Loguercio M, Guglielmo M, Baggiano A, et al. Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study. Eur Radiol. 2016;26:2155–65.

    Article  PubMed  Google Scholar 

  9. Maffei E, Messalli G, Martini C, Nieman K, Catalano O, Rossi A, et al. Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR. Eur Radiol. 2012;22(5):1041–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Aquaro GD, Di Bella G, Castelletti S, Maestrini V, Festa P, Ait-Ali I, et al. Clinical recommendations of cardiac magnetic resonance, Part 1: ischemic and valvular heart disease: a position paper of the working group “applicazioni della risonanza magnetica” of the Italian society of cardiology. J Cardiovasc Med (Hagerstown). 2017;18:197–208. doi:10.2459/JCM.0000000000000498. It is an interesting Italian position paper about the possible clinical applications and implications of CMR in the clinical setting of acute and chronic ischemic heart disease.

    Article  Google Scholar 

  11. Basuk WL, Reimer KA, Jennings RB. Effect of repetitive brief episodes of ischemia on cell volume, electrolytes and ultrastructure. J Am Coll Cardiol. 1986;8:33A–41A.

    Article  CAS  PubMed  Google Scholar 

  12. Lowe JE, Reimer KA, Jennings RB. Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol. 1978;90:363–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Investig. 1979;40:633–44.

    CAS  PubMed  Google Scholar 

  14. Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2013;34:1714–22. doi:10.1093/eurheartj/eht090.

    Article  PubMed  Google Scholar 

  15. Robbers LF, Erenberg ES, Teunissen PF, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–53. doi:10.1093/eurheartj/eht100.

    Article  CAS  PubMed  Google Scholar 

  16. Basso C, Corbetti F, Silva C, Abudureheman A, Lacognata C, Cacciavillani L, et al. Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance. Am J Cardiol. 2007;100:1322–7. doi:10.1016/j.amjcard.2007.05.062.

    Article  PubMed  Google Scholar 

  17. Tarantini G, Cacciavillani L, Corbetti F, Ramondo A, Marra MP, Bacchiega E, et al. Duration of ischemia is a major determinant of transmurality and severe microvascular obstruction after primary angioplasty. J Am Coll Cardiol. 2005;46:1229–35. doi:10.1016/j.jacc.2005.06.054.

    Article  PubMed  Google Scholar 

  18. •• Eitel I, de Waha S, Wöhrle J, Fuernau G, Lurz P, Pauschinger M, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1217–26. doi:10.1016/j.jacc.2014.06.1194. The present paper of Eitel et al. represents a cornerstone in the clinical prognostic involvement of CMR derived indices in STEMI patients.

    Article  PubMed  Google Scholar 

  19. Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH, et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation. 2008;118:837–44. doi:10.1161/CIRCULATIONAHA.107.740597.

    Article  PubMed  Google Scholar 

  20. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, et al. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54:2145–53. doi:10.1016/j.jacc.2009.08.024.

    Article  PubMed  Google Scholar 

  21. Higgins CB, Herfkens R, Lipton MJ, et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol. 1983;52:184–8.

    Article  CAS  PubMed  Google Scholar 

  22. Dall’Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4:228–36. doi:10.1161/CIRCIMAGING.111.963421.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eitel I, Friedrich MG. T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson. 2011;13:13. doi:10.1186/1532-429X-13-13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Dorado D, Oliveras J, Gili J, Sanz E, Pérez-Villa F, Barrabés J, et al. Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res. 1993;27:1462–9.

    Article  CAS  PubMed  Google Scholar 

  25. Friedrich MG. Myocardial edema—a new clinical entity? Nat Rev Cardiol. 2010;7:292–6. doi:10.1038/nrcardio.2010.28.

    PubMed  Google Scholar 

  26. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011;4:269–78. doi:10.1016/j.jcmg.2010.09.023.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McCann GP, Khan JN, Greenwood JP, Nazir S, Dalby M, Curzen N, et al. Complete versus lesion-only primary PCI: the randomized cardiovascular MR CvLPRIT substudy. J Am Coll Cardiol. 2015;66:2713–24. doi:10.1016/j.jacc.2015.09.099.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ubachs JF, Sörensson P, Engblom H, Carlsson M, Jovinge S, Pernow J, et al. Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. Eur Heart J Cardiovas Imaging. 2012;13:1008–15. doi:10.1093/ehjci/jes091.

    Article  Google Scholar 

  29. Nordlund D, Heiberg E, Carlsson M, Fründ E-T, Hoffmann P, Koul S, et al. Extent of myocardium at risk for left anterior descending artery, right coronary artery, and left circumflex artery occlusion depicted by contrast-enhanced steady state free precession and T2-weighted short tau inversion recovery magnetic resonance imaging. Circ Cardiovasc Imaging. 2016;9:e004376. doi:10.1161/CIRCIMAGING.115.004376.

    Article  PubMed  Google Scholar 

  30. Mangion K, Berry C. Advances in magnetic resonance imaging of the myocardial area at risk and salvage. Circ Cardiovasc Imaging. 2016;9:e005127. doi:10.1161/CIRCIMAGING.116.005127.

    Article  PubMed  Google Scholar 

  31. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. doi:10.1186/1532-429X-15-92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by precontrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603. doi:10.1016/j.jcmg.2012.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guaricci AI, Brunetti ND, Perazzolo Marra M, Tarantini G, di Biase M, Pontone G. Diagnosis and prognosis of ischemic heart disease: the framework of cardiac magnetic resonance. J Cardiovasc Med. 2015;6(10):653–62. doi:10.2459/JCM.0000000000000267.

    Article  Google Scholar 

  34. Jellis CL, Kwon DH. Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther. 2014;4(2):126–37. doi:10.3978/j.issn.2223-3652.2013.09.03.

    PubMed  PubMed Central  Google Scholar 

  35. Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26:1081–6. doi:10.1002/jmri.21119.

    Article  PubMed  Google Scholar 

  36. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Noncontrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:42. doi:10.1186/1532-429X-14-42.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dweck MR, Williams MC, Moss AJ, Newby DE, Fayad ZA. Computed tomography and cardiac magnetic resonance in ischemic heart disease. J Am Coll Cardiol. 2016;68:2201–16. doi:10.1016/j.jacc.2016.08.047.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Adams DF, Hessel SJ, Judy PF, Stein JA, Abrams HL. Computed tomography of the normal and infarcted myocardium. AJR Am J Roentgenol. 1976;126:786–91. doi:10.2214/ajr.126.4.786.

    Article  CAS  PubMed  Google Scholar 

  39. •• Pontone G, Guaricci AI, Carita’ P, Andreini D, Guglielmo M, Mustaq S, et al. Diagnostic value of QT evaluation in anterior ST-segment elevation myocardial infarction for prediction of myocardial salvage index, as compared to CMR. JACC. 2017;69(11):1619. doi:10.1016/S0735-1097(17)35008-8. In an era of constrained healthcare expenditure, the recently published results highlights about the role of simple and low cost methods - such as electrocardiography with analysis of repolarisation forces – to guide the indication to CMR study in an unselected population of anterior STEMI. The study has showed that failed QT prolongation resolution is highly correlated with higher infarct size and lower MSI.

    Article  Google Scholar 

  40. Mewton N, Revel D, Bonnefoy E, Ovize M, Croisille P. Comparison of visual scoring and quantitative planimetry methods for estimation of global infarct size on delayed enhanced cardiac MRI and validation with myocardial enzymes. Eur J Radiol. 2011;78:87–92. doi:10.1016/j.ejrad.2009.09.027.

    Article  PubMed  Google Scholar 

  41. Bulluck H, Rosmini S, Abdel-Gadir A, Bhuva AN, Treibel TA, Fontana M, et al. Impact of microvascular obstruction on semiautomated techniques for quantifying acute and chronic myocardial infarction by cardiovascular magnetic resonance. Open Heart. 2016;3:e000535. doi:10.1136/openhrt-2016-000535.

    Article  PubMed  PubMed Central  Google Scholar 

  42. •• Bulluck H, Hammond-Haley M, Weinmann S, Martinez-Macias R, Hausenloy DJ. Myocardial infarct size by CMR in clinical cardioprotection studies insights from randomized controlled trials. J Am Coll Cardiol Img. 2017;10:230–40. doi:10.1016/j.jcmg.2017.01.008. The authors provide recommendations for standardizing the assessment of MI size using CMR in future clinical randomized clinical trials in reperfused patients with ST-segment elevation myocardial infarction (STEMI).

    Article  Google Scholar 

  43. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903. doi:10.1016/j.jacc.2010.11.013.

    Article  PubMed  Google Scholar 

  44. Li Y, Li C, Jin H, Huang W. Magnetic resonance imaging in interventional therapy of patients with acute myocardial infarction prior to and after treatment. Exp Ther Med. 2016;12:1755–9. doi:10.3892/etm.2016.3537.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ganame J, Messalli G, Masci PG, Dymarkowski S, Abbasi K, Van de Werf F, et al. Time course of infarct healing and left ventricular remodelling in patients with reperfused ST segment elevation myocardial infarction using comprehensive magnetic resonance imaging. Eur Radiol. 2010;21:693–701. doi:10.1007/s00330-010-1963-8.

    Article  PubMed  Google Scholar 

  46. McCrohon JA, Moon JCC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9. doi:10.1161/01.CIR.0000078641.19365.4C.

    Article  CAS  PubMed  Google Scholar 

  47. Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol. 2009;55:1–16. doi:10.1016/j.jacc.2009.06.059.

    Article  PubMed  Google Scholar 

  48. Lee SA, Yoon YE, Kim JE, Park JJ, Oh IY, Yoon CH, et al. Long-term prognostic value of late gadolinium-enhanced magnetic resonance imaging in patients with and without left ventricular dysfunction undergoing coronary artery bypass grafting. Am J Cardiol. 2016;118:1647–54. doi:10.1016/j.amjcard.2016.08.043.

    Article  PubMed  Google Scholar 

  49. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53. doi:10.1056/NEJM200011163432003.

    Article  CAS  PubMed  Google Scholar 

  50. Glaveckaite S, Valeviciene N, Palionis D, Skorniakov V, Celutkiene J, Tamosiunas A, et al. Value of scar imaging and inotropic reserve combination for the prediction of segmental and global left ventricular functional recovery after revascularisation. J Cardiovasc Magn Reson. 2011;13:35. doi:10.1186/1532-429X-13-35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117:103–14. doi:10.1161/CIRCULATIONAHA.107.702993.

    Article  PubMed  Google Scholar 

  52. Klem I, Heitner JF, Shah DJ, Sketch MH Jr, Behar V, Weinsaft J, et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006;47:1630–8. doi:10.1016/j.jacc.2005.10.074.

    Article  PubMed  Google Scholar 

  53. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25. doi:10.1056/NEJMoa1100358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robbers LF, Erenberg ES, Teunissen PF, Jansen MF, Hollander MR, Horrevoets AJ, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–53. doi:10.1093/eurheartj/eht100.

    Article  CAS  PubMed  Google Scholar 

  55. Stork A, Lund GK, Muellerleile K, Bansmann PM, Nolte-Ernsting C, Kemper J, et al. Characterization of the peri-infarction zone using T2-weighted MRI and delayed-enhancement MRI in patients with acute myocardial infarction. Eur Radiol. 2006;16:2350–7. doi:10.1007/s00330-006-0232-3.

    Article  PubMed  Google Scholar 

  56. Beek AM, Nijveldt R, van Rossum AC. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int J Cardiovasc Imag. 2010;26:49–55. doi:10.1007/s10554-009-9499-1.

    Article  CAS  Google Scholar 

  57. Ganame J, Messalli G, Dymarkowski S, Rademakers FE, Desmet W, Van de Werf F, et al. Impact of myocardial hemorrhage of left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J. 2009;30:1440–9. doi:10.1093/eurheartj/ehp093.

    Article  PubMed  Google Scholar 

  58. Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6:373–83.

    Article  PubMed  Google Scholar 

  59. Schleichert RA, Seliger SL, Zhan M, Gaspari AA. Nephrogenic systemic fibrosis and diabetes mellitus. Arch Dermatol. 2012;148:255–7.

    Article  PubMed  Google Scholar 

  60. Bulluck H, Rosmini S, Abdel-Gadir A, Bhuva AN, Treibel TA, Fontana M, et al. Diagnostic performance of T1 and T2 mapping to detect intramyocardial hemorrhage in reperfused ST-segment elevation myocardial infarction patients. J Magn Reson Imaging. 2017. doi: 10.1002/jmri.25638.

  61. Carità P, Corrado E, Pontone G, Curnis A, Bontempi L, Novo G, et al. Non responder to resynchronization therapy: insights from multimodality imaging and electrocardiography a brief review. Int J Cardiol. 2016;225:402–7. doi:10.1016/j.ijcard.2016.09.037.

    Article  PubMed  Google Scholar 

  62. Delewi R, Nijveldt R, Hirsch A, Marcu CB, Robbers L, Hassell ME, et al. Left ventricular thrombus formation after acute myocardial infarction as assessed by cardiovascular magnetic resonance imaging. Eur J Radiol. 2012;81:3900–4. doi:10.1016/j.ejrad.2012.06.029.

    Article  PubMed  Google Scholar 

  63. Cambronero-Cortinas E, Bonanad C, Monmeneu JV, Monmeneu JV, Lopez-Lereu MP, Gavara J, et al. Incidence, outcomes, and predictors of ventricular thrombus after reperfused ST-segment-elevation myocardial infarction by using sequential cardiac MR imaging. Radiology. 2017;2:161898. doi:10.1148/radiol.2017161898.

    Google Scholar 

  64. Weinsaft JW, Kim J, Medicherla CB, Ma CL, Codella NC, Kukar N, et al. Echocardiographic algorithm for postmyocardial infarction LV thrombus: a gatekeeper for thrombus evaluation by delayed enhancement CMR. JACC Cardiovasc Imaging. 2016;9(5):505–15. doi:10.1016/j.jcmg.2015.06.017.

    Article  PubMed  Google Scholar 

  65. The Multicenter Postinfarction Research Group. Risk stratification and survival after myocardial infarction. N Engl J Med. 1983;309:331–6. doi:10.1056/NEJM198308113090602.

    Article  Google Scholar 

  66. Pontone G, Guaricci AI, Andreini D, Solbiati A, Guglielmo M, Mushtaq S, et al. Prognostic benefit of cardiac magnetic resonance over transthoracic echocardiography for the assessment of ischemic and nonischemic dilated cardiomyopathy patients referred for the evaluation of primary prevention implantable cardioverter-defibrillator therapy. Circ Cardiovasc Imaging. 2016; doi:10.1161/CIRCIMAGING.115.004956.

  67. Wu E, Ortiz JT, Tejedor P, Lee DC, Bucciarelli-Ducci C, Kansal P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94:730–6. doi:10.1136/hrt.2007.122622.

    Article  CAS  PubMed  Google Scholar 

  68. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol. 2016;67:1674–83. doi:10.1016/j.jacc.2016.01.069.

    Article  PubMed  Google Scholar 

  69. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–72.

    Article  CAS  PubMed  Google Scholar 

  70. Gerber BL, Rochitte CE, Melin JA, McVeigh ER, Bluemke DA, Wu KC, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation. 2000;101:2734–41.

    Article  CAS  PubMed  Google Scholar 

  71. •• Pontone G, Andreini D, Ferro G, Guaricci AI, Guglielmo M, Mustaq S, et al. Prognostic stratification in patients with ST-segment elevation myocardial infarction over transthoracic echocardiography by CMR. J Am Coll Cardiol 2017;69:E1342. This abstract presents the value of multi-parametric CMR derived indices in the stratification of prognosis of STEMI patients over and above a conventional used, clinical and echocardiographic, parameters.

  72. Orn S, Manhenke C, Greve OJ, Larsen AI, Bonarjee VV, Edvardsen T, et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J. 2009;30:1978–85. doi:10.1093/eurheartj/ehp219.

    Article  PubMed  Google Scholar 

  73. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J. Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol. 2010;55:1649–60. doi:10.1016/j.jacc.2009.12.037.

    Article  PubMed  Google Scholar 

  74. Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, et al. Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4. Circulation. 2012;125:140–9. doi:10.1161/CIRCULATIONAHA.111.049072.

    Article  CAS  PubMed  Google Scholar 

  75. Petronio AS, De Carlo M, Ciabatti N, Amoroso G, Limbruno U, Palagi C, et al. Left ventricular remodelling after primary coronary angioplasty in patients treated with abciximab or intracoronary adenosine. Am Heart J. 2005;150:1015. doi:10.1016/j.ahj.2005.07.012.

    Article  PubMed  Google Scholar 

  76. Wöhrle J, von Scheidt F, Schauwecker P, Wiesneth M, Markovic S, Schrezenmeier H, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol. 2013;102:765–70. doi:10.1016/j.ahj.2005.07.012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Pontone.

Ethics declarations

Conflict of Interest

Gianluca Pontone reports grants from institutional honorarium or grant research from GE HealthCare, Medtronic, Bracco, Bayer, and Heartflow.

Patrizia Carità, Mark G. Rabbat, Marco Guglielmo, Andrea Baggiano, Giuseppe Muscogiuri, and Andrea I. Guaricci declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac PET, CT, and MRI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontone, G., Carità, P., Rabbat, M.G. et al. Role of Cardiac Magnetic Resonance Imaging in Myocardial Infarction. Curr Cardiol Rep 19, 101 (2017). https://doi.org/10.1007/s11886-017-0907-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0907-1

Keywords

Navigation