Skip to main content
Log in

CFR and FFR Assessment with PET and CTA: Strengths and Limitations

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) myocardial perfusion imaging (MPI) has high diagnostic accuracy and prognostic value. PET-MPI can also be used to quantitatively evaluate regional myocardial blood flow (MBF). This technique also allows the calculation of the coronary flow reserve (CFR)/myocardial flow reserve (MFR), which is the ratio of MBF at peak hyperemia to resting MBF. Coronary computed tomography angiography (CTA) is a non-invasive method for accurate detection and exclusion of high-grade coronary stenoses, when compared to an invasive coronary angiography reference standard. However, CTA assessment of coronary stenoses tends toward overestimation, and CTA cannot determine physiologic significance of lesions. Recent advances in computational fluid dynamics and image-based modeling permit calculation of non-invasive fractional flow reserve derived from CT (FFRCT), without the need for additional imaging, modification of acquisition protocols, or administration of medications. In this review, we cover the CFR/MFR assessment by PET and FFR assessment by CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CFD:

Computational fluid dynamics

CFR:

Coronary flow reserve

CTA:

Computed tomographic angiography

FFR:

Fractional flow reserve

FFRCT :

Fractional flow reserve derived from CT

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

NPV:

Negative predictive value

PET:

Positron emission tomography

PPV:

Positive predictive value

SPECT:

Single-photon emission computed tomography

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Di Carli MF, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics. 2011;31(5):1239–54.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Senthamizhchelvan S, Bravo PE, Lodge MA, Merrill J, Bengel FM, Sgouros G. Radiation dosimetry of 82Rb in humans under pharmacologic stress. J Nucl Med Off Publ Soc Nucl Med. 2011;52(3):485–91. doi:10.2967/jnumed.110.083477.

    Google Scholar 

  3. Stabin MG. Proposed revision to the radiation dosimetry of 82Rb. Health Phys. 2010;99(6):811–3. doi:10.1097/HP.0b013e3181e47b33.

    Article  CAS  PubMed  Google Scholar 

  4. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med Off Publ Soc Nucl Med. 2007;48(5):783–93. doi:10.2967/jnumed.106.032789.

    Google Scholar 

  5. Stabin MG. Radiopharmaceuticals for nuclear cardiology: radiation dosimetry, uncertainties, and risk. J Nucl Med Off Publ Soc Nucl Med. 2008;49(9):1555–63. doi:10.2967/jnumed.108.052241.

    CAS  Google Scholar 

  6. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14(3):639–52.

    Article  CAS  PubMed  Google Scholar 

  7. Knuuti J, Kajander S, Mäki M, Ukkonen H. Quantification of myocardial blood flow will reform the detection of CAD. J Nucl Cardiol. 2009;16(4):497–506. doi:10.1007/s12350-009-9101-1.

    Article  PubMed  Google Scholar 

  8. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3(6):623–40. doi:10.1016/j.jcmg.2010.04.007.

    Article  PubMed  Google Scholar 

  9. Dilsizian V, Taillefer R. Journey in evolution of nuclear cardiology: will there be another quantum leap with the F-18-labeled myocardial perfusion tracers? JACC Cardiovasc Imaging. 2012;5(12):1269–84. doi:10.1016/j.jcmg.2012.10.006.

    Article  PubMed  Google Scholar 

  10. Maddahi J. Properties of an ideal PET perfusion tracer: new PET tracer cases and data. J Nucl Cardiol. 2012;19 Suppl 1:S30–7. doi:10.1007/s12350-011-9491-8.

    Article  PubMed  Google Scholar 

  11. Maddahi J, Czernin J, Lazewatsky J, Huang S-C, Dahlbom M, Schelbert H, et al. Phase I, first-in-human study of BMS747158, a novel F-18-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med. 2011;52(9). doi:10.2967/jnumed.111.092528.

  12. Maddahi J, Huang S, Truong D, Lazewatsky J, Ehlgen A, Schelbert H, et al. Preliminary results of absolute quantification of rest and stress myocardial blood flow with flurpiridaz F-18 PET in normal and coronary artery disease patients in a single-center study. J Nucl Cardiol. 2010;17:743. abstract.

    Article  Google Scholar 

  13. Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61(4):469–77. doi:10.1016/j.jacc.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  14. Klein R, Beanlands R, deKemp R. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17(4):555–70. doi:10.1007/s12350-010-9256-9.

    Article  PubMed  Google Scholar 

  15. Slomka PJ, Alexanderson E, Jácome R, Jiménez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53(2):171–81. doi:10.2967/jnumed.111.095398.

    Article  CAS  PubMed  Google Scholar 

  16. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol. 2010;17(4):600–16. doi:10.1007/s12350-010-9225-3.

    Article  PubMed  Google Scholar 

  17. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with (82)Rb PET: comparison with (13)N-ammonia PET. J Nucl Med. 2009;50(7):1062–71. doi:10.2967/jnumed.104.007831.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13. doi:10.1161/CIRCULATIONAHA.109.915009.

    Article  CAS  PubMed  Google Scholar 

  19. Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med. 2013;54(4):571–7. doi:10.2967/jnumed.112.112219.

    Article  CAS  PubMed  Google Scholar 

  20. Beanlands RS, Ziadi MC, Williams K. Quantification of myocardial flow reserve using positron emission imaging the journey to clinical use. J Am Coll Cardiol. 2009;54(2):157–9. doi:10.1016/j.jacc.2009.03.049.

    Article  PubMed  Google Scholar 

  21. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11(4):440–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. doi:10.1007/s12350-011-9506-5. This study provides usefulness of myocardial flow reserve (MFR) for 3-vessel coronary artery disease.

    Article  PubMed  Google Scholar 

  23. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53(8):1230–4. doi:10.2967/jnumed.111.101840. This study provides substantial added diagnostic value of myocardial flow reserve (MFR) for detection of coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  24. Santana CA, Folks RD, Garcia EV, Verdes L, Sanyal R, Hainer J, et al. Quantitative (82)Rb PET/CT: development and validation of myocardial perfusion database. J Nucl Med. 2007;48(7):1122–8. doi:10.2967/jnumed.107.039750.

    Article  PubMed  Google Scholar 

  25. Nakazato R, Berman DS, Dey D, Le Meunier L, Hayes SW, Fermin JS, et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography. J Nucl Cardiol. 2012;19(2):265–76. doi:10.1007/s12350-011-9496-3.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kaster T, Mylonas I, Renaud JM, Wells GA, Beanlands RS, Dekemp RA. Accuracy of low-dose rubidium-82 myocardial perfusion imaging for detection of coronary artery disease using 3D PET and normal database interpretation. J Nucl Cardiol. 2012. doi:10.1007/s12350-012-9621-y.

  27. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2(6):751–8. doi:10.1016/j.jcmg.2009.04.004.

    Article  PubMed  Google Scholar 

  28. Anagnostopoulos C, Almonacid A, El Fakhri G, Curillova Z, Sitek A, Roughton M, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging. 2008;35(9):1593–601. doi:10.1007/s00259-008-0793-2.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nesterov SV, Han C, Maki M, Kajander S, Naum AG, Helenius H, et al. Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging. 2009;36(10):1594–602. doi:10.1007/s00259-009-1143-8.

    Article  PubMed  Google Scholar 

  30. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4(6):678–84. doi:10.1161/CIRCIMAGING.110.960732.

    Article  PubMed  Google Scholar 

  31. Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47(6):1188–95. doi:10.1016/j.jacc.2005.10.062.

    Article  CAS  PubMed  Google Scholar 

  32. Prior JO, Quinones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005;111(18):2291–8. doi:10.1161/01.CIR.0000164232.62768.51.

    Article  CAS  PubMed  Google Scholar 

  33. Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, Lüscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  34. Quiñones MJ, Hernandez-Pampaloni M, Schelbert H, Bulnes-Enriquez I, Jimenez X, Hernandez G, et al. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med. 2004;140(9):700–8.

    Article  PubMed  Google Scholar 

  35. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6. doi:10.1016/j.jacc.2009.02.069.

    Article  PubMed  Google Scholar 

  36. Fukushima K, Javadi MS, Higuchi T, Lautamäki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011;52(5):726–32. doi:10.2967/jnumed.110.081828.

    Article  PubMed  Google Scholar 

  37. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–8. doi:10.1016/j.jacc.2011.01.065.

    Article  PubMed  Google Scholar 

  38. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24. doi:10.1161/CIRCULATIONAHA.111.050427. This study provides incremental prognostic significance of coronary flow reserve (CFR) for coronary artery disease.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M, et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol. 2005;45(9):1505–12.

    Article  PubMed  Google Scholar 

  40. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48(3):349–58.

    PubMed  Google Scholar 

  41. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846–54. doi:10.1016/j.jcmg.2009.04.009.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Slomka PJ, Dey D, Duvall WL, Henzlova MJ, Berman DS, Germano G. Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. Curr Cardiol Rep. 2012;14(2):208–16. doi:10.1007/s11886-012-0248-z.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med. 2005;46(9):1481–7.

    PubMed  Google Scholar 

  44. Bacharach SL. PET/CT attenuation correction: breathing lessons. J Nucl Med. 2007;48(5):677–9. doi:10.2967/jnumed.106.037499.

    Article  PubMed  Google Scholar 

  45. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–21. doi:10.2967/jnumed.107.039792.

    Article  PubMed  Google Scholar 

  46. Slomka PJ, Le Meunier L, Hayes SW, Acampa W, Oba M, Haemer GG, et al. Comparison of myocardial perfusion 82Rb PET performed with CT- and transmission CT-based attenuation correction. J Nucl Med. 2008;49(12):1992–8. doi:10.2967/jnumed.108.056580.

    Article  PubMed  Google Scholar 

  47. Kim H, Vignon-Clementel I, Coogan J, Figueroa C, Jansen K, Taylor C. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 2010;38(10):3195–209.

    Article  CAS  PubMed  Google Scholar 

  48. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41. doi:10.1016/j.jacc.2012.11.083. This review provides a thorough description of how FFR CT can be calculated.

  49. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87(4):1354–67. doi:10.1161/01.cir.87.4.1354.

    Article  CAS  PubMed  Google Scholar 

  50. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97.

    Article  PubMed  Google Scholar 

  51. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45. doi:10.1001/2012.jama.11274. This study provides substantial diagnostic value of FFR CT for the detection of hemodynamically significant coronary artery disease.

  52. Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A, et al. Noninvasive Fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging. 2013;6(6):881–9. doi:10.1161/CIRCIMAGING.113.000297. This study provides the ability of FFR CT to effectively rule out intermediate stenosis lesions that cause ischemia.

  53. Min J, Shaw L, Berman D. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol. 2010;55(10):957–65. doi:10.1016/j.jacc.2009.08.087.

    Article  PubMed  Google Scholar 

  54. Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52(8):636–43. doi:10.1016/j.jacc.2008.05.024.

    Article  PubMed  Google Scholar 

  55. Schuijf JD, Bax JJ. CT angiography: an alternative to nuclear perfusion imaging? Heart. 2008;94(3):255–7. doi:10.1136/hrt.2006.105833.

    Article  PubMed  Google Scholar 

  56. Leber AW, Knez A, White CW, Becker A, von Ziegler F, Muehling O, et al. Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol. 2003;91(6):714–8.

    Article  PubMed  Google Scholar 

  57. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47(8):1655–62. doi:10.1016/j.jacc.2006.01.041.

    Article  PubMed  Google Scholar 

  58. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26. doi:10.1016/j.jacc.2007.03.044.

    Article  PubMed  Google Scholar 

  59. Nakazato R, Shalev A, Doh JH, Koo BK, Dey D, Berman DS, et al. Quantification and characterisation of coronary artery plaque volume and adverse plaque features by coronary computed tomographic angiography: a direct comparison to intravascular ultrasound. Eur Radiol. 2013;23(8):2109–17. doi:10.1007/s00330-013-2822-1.

    Article  PubMed  Google Scholar 

  60. Ziadi MC, Beanlands RS. The clinical utility of assessing myocardial blood flow using positron emission tomography. J Nucl Cardiol. 2010;17(4):571–81. doi:10.1007/s12350-010-9258-7.

    Article  PubMed  Google Scholar 

  61. Min JK, Berman DS, Budoff MJ, Jaffer FA, Leipsic J, Leon MB, et al. Rationale and design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic AngiOgraphy) study. J Cardiovasc Comput Tomogr. 2011;5(5):301–9. doi:10.1016/j.jcct.2011.08.003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the National Institutes of Health (R01HL11515002 and R01HL11801901). This study was also funded by a gift from the Dalio Institute of Cardiovasular Imaging and the Michael Wolk Foundation.

Compliance with Ethics Guidelines

Conflict of Interest

Ryo Nakazato declares that he has no conflict of interest.

Ran Heo declares that he has no conflict of interest.

Jonathon Leipsic has received grant support from and been a consultant for HeartFlow. He has received payment for development of educational presentations including service on speakers' bureaus from GE Healthcare.

James K. Min has received grant support from HeartFlow. He serves as a consultant to HeartFlow.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Min.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazato, R., Heo, R., Leipsic, J. et al. CFR and FFR Assessment with PET and CTA: Strengths and Limitations. Curr Cardiol Rep 16, 484 (2014). https://doi.org/10.1007/s11886-014-0484-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0484-5

Keywords

Navigation