Skip to main content
Log in

How Does Renal Denervation Lower Blood Pressure and When Should This Technique Be Considered for the Treatment of Hypertension?

  • Hypertension (M Sorrentino, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Resistant hypertension poses significant health concerns. There are strong demands for new safe therapeutics to control resistant hypertension, while addressing its common causes, specifically poor compliance to lifelong polypharmacy, lifestyle modification and physician inertia. The sympathetic nervous system plays a significant pathophysiological role in hypertension. Surgical sympathectomy for blood pressure reduction is an old but extremely efficacious therapeutic concept, since abandoned, with the dawn of safer contemporary pharmacology era. Recently, clinical studies have revealed promising results for safe and sustained blood pressure reduction with percutaneous renal sympathetic denervation. This is a novel, minimally-invasive, device-based therapy, specifically targeting and ablating the renal artery nerves with radiofrequency waves, without permanent implantation. There are also reported additional benefits in related comorbidities, such as impaired glucose metabolism, renal impairment, left ventricular hypertrophy, heart failure, and others. This is review will focus on how selective renal sympathetic denervation works, as well as its present and potential therapeutic indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest have been highlighted as: •Of importance ••Of major importance

  1. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation. 2009;119:480–6.

    Article  PubMed  Google Scholar 

  2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  3. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996;275:1571–6.

    Article  PubMed  CAS  Google Scholar 

  4. van den Hoogen PC, Feskens EJ, Nagelkerke NJ, Menotti A, Nissinen A, Kromhout D. The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. Seven Countries Study Research Group. N Engl J Med. 2000;342:1–8.

    Article  PubMed  Google Scholar 

  5. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  6. Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, Barzi F, et al. Blood pressure lowering treatment Trialists' Collaboration. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomized trials. Br Med J. 2008;336:1121–3.

    Article  CAS  Google Scholar 

  7. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension. 2008;52:818–27.

    Article  PubMed  CAS  Google Scholar 

  8. Wolf-Maier K, Cooper RS, Kramer H, et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension. 2004;43:10–7.

    Article  PubMed  CAS  Google Scholar 

  9. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.

    Article  PubMed  Google Scholar 

  10. Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension. 2011;57:1076–80.

    Article  PubMed  CAS  Google Scholar 

  11. Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Böhm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100:1049–57.

    Article  PubMed  Google Scholar 

  12. Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bell-Reuss E, Trevino DL, Gottschalk CW. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976;57:1104–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kirchheim H, Ehmke H, Persson P. Sympathetic modulation of renal hemodynamics, renin release and sodium excretion. Klin Wochenschr. 1989;67:858–64.

    Article  PubMed  CAS  Google Scholar 

  15. Kon V. Neural control of renal circulation. Miner Electrolyte Metab. 1989;15:33–43.

    PubMed  CAS  Google Scholar 

  16. DiBona GF. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289:R633–41.

    Article  PubMed  CAS  Google Scholar 

  17. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    PubMed  CAS  Google Scholar 

  18. Esler M, Jennings G, Lambert G. Noradrenaline release and the pathophysiology of primary human hypertension. Am J Hypertens. 1989;2:140S–6S.

    PubMed  CAS  Google Scholar 

  19. Converse Jr RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.

    Article  PubMed  Google Scholar 

  20. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43:169–75.

    Article  PubMed  CAS  Google Scholar 

  21. Campese VM. Neurogenic factors and hypertension in chronic renal failure. J Nephrol. 1997;10:184–7.

    PubMed  CAS  Google Scholar 

  22. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.

    Article  PubMed  CAS  Google Scholar 

  23. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26:861–5.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen SL. Hypertension in renal transplant recipients: role of bilateral nephrectomy. Br Med J. 1973;3:78–81.

    Article  PubMed  CAS  Google Scholar 

  25. McHugh MI, Tanboga H, Marcen R, Liano F, Robson V, Wilkinson R. Hypertension following renal transplantation: the role of the host's kidney. Q J Med. 1980;49:395–403.

    PubMed  CAS  Google Scholar 

  26. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.

    Article  PubMed  Google Scholar 

  27. Abramczyk P, Zwoliñska A, Oficjalski P, Przybylski J. Kidney denervation combined with elimination of adrenal-renal portal circulation prevents the development of hypertension in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1999;26:32–4.

    Article  PubMed  CAS  Google Scholar 

  28. Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension. 2005;45:754–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25(4 Pt 2):893–7.

    Article  PubMed  CAS  Google Scholar 

  30. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1266 cases. J Am Med Assoc. 1953;152:1501–4.

    Article  PubMed  CAS  Google Scholar 

  31. Leishman WD. Hypertension—treated and untreated. Br Med J. 1959;1:1361–8.

    Article  PubMed  CAS  Google Scholar 

  32. Newcombe CP, Shucksmith HS, Suffern WS. Sympathectomy for hypertension; follow-up of 212 patients. Br Med J. 1959;1:142–4.

    Article  PubMed  CAS  Google Scholar 

  33. Schlaich MP, Hering D, Sobotka PA, Krum H, Esler MD. Renal denervation in human hypertension: mechanisms, current findings, and future prospects. Curr Hypertens Rep. 2012;14:247–53.

    Article  PubMed  Google Scholar 

  34. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Google Scholar 

  35. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Google Scholar 

  36. •• Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomized controlled trial. Lancet. 2010;376:1903–9. Initial proof-of-concept studies are now supported by this first randomized controlled clinical trial demonstrating that, compared with an untreated control group, there is substantial BP reduction associated with RSD.

    Article  PubMed  Google Scholar 

  37. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  PubMed  CAS  Google Scholar 

  38. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458–64.

    Article  PubMed  CAS  Google Scholar 

  39. Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23:876–81.

    Article  PubMed  Google Scholar 

  40. •• Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9. This study demonstrates that renal denervation is not only associated with BP reduction but also with a marked regression of LV hypertrophy in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  41. DiBona GF. Renal innervation and denervation: lessons from renal transplantation reconsidered. Artif Organs. 1987;11:457–62.

    Article  PubMed  CAS  Google Scholar 

  42. •• Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7. This study demonstrates that the blood pressure effects achieved by RSD are sustained up to at least 2 years. It provides indirect evidence of the renal afferent sympathetic role in hypertension.

    Article  Google Scholar 

  43. Arrowood JA et al. Evidence against reinnervation of cardiac vagal afferents after human orthotopic cardiac transplantation. Circulation. 1995;92:402–8.

    Article  PubMed  CAS  Google Scholar 

  44. Kandzari DE, Bhatt DL, Sobotka PA, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the Symplicity HTN-3 trial. Clin Cardiol. 2012;35(9):528–35.

    Google Scholar 

  45. The ALLHAT. Officers and coordinators for the ALLHAT collaborative research group major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diureticthe Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.

    Article  Google Scholar 

  46. • Schmieder RE, Redon J, Grassi G, Kjeldsen SE, Mancia G, Narkiewicz K, et al. ESH position paper: renal denervation-an interventional therapy of resistant hypertension. J Hypertens. 2012;30:837–41. A comprehensive and clear guideline from the European Society of Hypertension on the present indications for percutaneous RSD, citing contemporary evidence.

    Article  PubMed  CAS  Google Scholar 

  47. •• Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, et al. Renal denervation in moderate to severe Chronic Kidney Disease. J Am Soc Nephrol. 2012;23:1250–7. This pilot study provides evidence that renal denervation is effective and safe in patients with moderate to severe Chronic Kidney Disease.

    Article  PubMed  CAS  Google Scholar 

  48. Pontremoli R, Viazzi F, Martinoli C, Ravera M, Nicolella C, Berruti V, et al. Increased renal resistive index in patients with essential hypertension: a marker of target organ damage. Nephrol Dial Transplant. 1999;14:360–5.

    Article  PubMed  CAS  Google Scholar 

  49. •• Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60:419–24. The study demonstrates that RSD reduces the RRI and the rate of albuminuria without effects on GFR, as measured by cystatin C, or damage to renal arteries, while significantly reducing blood pressure in patients with resistant hypertension.

    Article  PubMed  CAS  Google Scholar 

  50. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20:933–9.

    Article  PubMed  Google Scholar 

  51. Amann K, Rump LC, Simonaviciene A, Oberhauser V, Wessels S, Orth SR, et al. Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats. J Am Soc Nephrol. 2000;11:1469–78.

    PubMed  CAS  Google Scholar 

  52. Vonend O, Marsalek P, Russ H, Wulkow R, Oberhauser V, Rump LC. Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21:1709–17.

    Article  PubMed  CAS  Google Scholar 

  53. • Bock JS, Gottlieb SS. Cardiorenal Syndrome. New Perspectives. Circulation. 2010;121:2592–600. A comprehensive and clear review on cardio-renal syndrome, including patho-physiology and therapeutic options.

    Article  PubMed  Google Scholar 

  54. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  PubMed  CAS  Google Scholar 

  55. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  PubMed  CAS  Google Scholar 

  56. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–10.

    Article  PubMed  CAS  Google Scholar 

  57. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adultsa report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–e90.

    Article  PubMed  Google Scholar 

  58. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, et al. MOXCON Investigators. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail. 2003;5:659–67.

    Article  PubMed  CAS  Google Scholar 

  59. Sobotka PA, Krum H, Böhm M, Francis DP, Schlaich MP. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep. 2012;14:285–92.

    Article  PubMed  Google Scholar 

  60. West RL, Hernandez AF, O'Connor CM, Starling RC, Califf RM. A review of dyspnea in acute heart failure syndromes. Am Heart J. 2010;160:209–14.

    Article  PubMed  Google Scholar 

  61. Pocock SJ, Wang D, Pfeffer MA, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65–75.

    Article  PubMed  Google Scholar 

  62. Flannery G, Gehrig-Mills R, Billah B, Krum H. Analysis of randomized controlled trials on the effect of magnitude of heart rate reduction on clinical outcomes in patients with systolic chronic heart failure receiving beta-blockers. Am J Cardiol. 2008;101:865–9.

    Article  PubMed  CAS  Google Scholar 

  63. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, et al. on behalf of the SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomized placebo-controlled study. Lancet. 2010;376:875–85.

    Article  PubMed  CAS  Google Scholar 

  64. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  PubMed  CAS  Google Scholar 

  65. Del Pace S, Parodi G, Bellandi B, Zampini L, Venditti F, Ardito M, et al. Tuscany Registry of Tako-tsubo Cardiomyopathy. Anxiety trait in patients with stress-induced cardiomyopathy: a case-control study. Clin Res Cardiol. 2011;100:523–9.

    Article  PubMed  Google Scholar 

  66. Komajda M, Follath F, Swedberg K, et al. The EuroHeart Failure Survey programme; a survey on the quality of care among patients with heart failure in Europe. Part 2: treatment. Eur Heart J. 2003;24:464–74.

    Article  PubMed  CAS  Google Scholar 

  67. Masuo K, Mikami H, Ogihara T, Tuck ML. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10:77–83.

    Article  PubMed  CAS  Google Scholar 

  68. Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.

    Article  PubMed  CAS  Google Scholar 

  69. Lima NK, Abbasi F, Lamendola C, Reaven GM. Prevalence of insulin resistance and related risk factors for cardiovascular disease in patients with essential hypertension. Am J Hypertens. 2009;22:106–11.

    Article  PubMed  CAS  Google Scholar 

  70. •• Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6. This is a pilot study which identifies the renal sympathetic nervous system as an important regulator of insulin resistance and shows that renal nerve ablation substantially improves insulin sensitivity and glucose metabolism, in addition to significantly reducing blood pressure.

    Article  PubMed  CAS  Google Scholar 

  71. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001;19:2271–7.

    Article  PubMed  CAS  Google Scholar 

  72. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing, in collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118:1080–111.

    Article  PubMed  Google Scholar 

  73. Grassi G, Facchini A, Trevano FQ, Dell’Oro R, Arenare F, Tana F, et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46:321–5.

    Article  PubMed  CAS  Google Scholar 

  74. •• Witkowski A, Prejbisz A, Florczak E, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58:559–65. This is a pilot study which shows that catheter-based renal sympathetic denervation lowered BP in patients with refractory hypertension and obstructive sleep apnea, and this was accompanied by improvement of sleep apnea severity.

    Article  PubMed  CAS  Google Scholar 

  75. Mabin T, Sapoval M, Cabane V, Stemmett J, Iyer M. First experience with endovascular ultrasound renal denervation for treatment of resistant hypertension. EuroIntervention. 2012;8:57–61.

    Article  PubMed  Google Scholar 

  76. Schlaich MP, Krum H, Sobotka PA, Esler MD. Renal denervation and hypertension. Am J Hypertens. 2011;24:635–42.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Kui Toh Gerard Leong is the Site PI (Changi General Hospital, Singapore) for the Global Symplicity Registry. Henry Krum has received a research grant to perform the Symplicity studies from Medtronic; has served on the local Advisory Board for Medtronic; and has received payment for lectures from Medtronic.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Toh Gerard Leong.

Additional information

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leong, K.T.G., Krum, H. How Does Renal Denervation Lower Blood Pressure and When Should This Technique Be Considered for the Treatment of Hypertension?. Curr Cardiol Rep 15, 414 (2013). https://doi.org/10.1007/s11886-013-0414-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0414-y

Keywords

Navigation