Skip to main content
Log in

Computer Modeling to Tailor Therapy for Congenital Heart Disease

  • Congenital Heart Disease (J Deanfield, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The inherent structural and physiological complexity of congenital heart disease lends itself strongly to simulation. Complex hemodynamic and structural problems unique to congenital heart disease may be difficult to understand and the response to therapy or intervention uncertain. Methodologies borrowed from engineering, computing and mathematical sciences can be applied to such problems and used to inform clinical decisions. Therapy thus informed by modeling experiments has the potential to contribute significantly to improved clinical outcomes. This field remains in its infancy, and will only become used routinely if validation of current methods is carried out in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Barnea O, Austin EH, Richman B, Santamore WP. Balancing the circulation: theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome. J Am Coll Cardiol. 1994;24(5):1376–81.

    Article  PubMed  CAS  Google Scholar 

  2. Biglino G, Capelli C, Binazzi A, Reggiani R, Cosentino D, Migliavacca F, et al. Virtual and real bench testing of a new percutaneous valve device: a case study. EuroIntervention. 2012;8(1):120–8.

    Article  PubMed  Google Scholar 

  3. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 37: 483–526 (1899). J Mol Cell Cardiol. 1990;22(3):253–4.

    Article  PubMed  CAS  Google Scholar 

  4. Biglino G, Giardini A, Baker C, Figliola RS, Hsia TY, Taylor AM, et al. In vitro study of the Norwood palliation: a patient-specific mock circulatory system. ASAIO J. 2012;58(1):25–31.

    Article  PubMed  Google Scholar 

  5. Pekkan K, Kitajima HD, de Zelicourt D, Forbess JM, Parks WJ, Fogel MA, et al. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation. 2005;112(21):3264–71.

    Article  PubMed  Google Scholar 

  6. Pennati G, Corsini C, Cosentino D, Hsia TY, Luisi VS, Dubini G, et al. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus. 2011;1(3):297–307.

    Article  PubMed  Google Scholar 

  7. • Clementel IV, Marsden AL, Feinstein JA. A Primer on Computational Simulation in Congenital Heart Disease for the Clinician. arXiv preprint arXiv:11013726. 2010. Excellent review of computational modeling methodologies for a clinical audience.

  8. d’Udekem Y et al. The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation. 2007;116(11 Suppl):I157–64.

    PubMed  Google Scholar 

  9. de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg. 1988;96(5):682–95.

    PubMed  Google Scholar 

  10. de Leval MR, Deanfield JE. Four decades of Fontan palliation. Nat Rev Cardiol. 2010;7(9):520–7.

    Article  PubMed  Google Scholar 

  11. Fontan F, Kirklin JW, Fernandez G, Costa F, Naftel DC, Tritto F, et al. Outcome after a “perfect” Fontan operation. Circulation. 1990;81(5):1520–36.

    Article  PubMed  CAS  Google Scholar 

  12. Kirklin JK, Brown RN, Bryant AS, Naftel DC, Colvin EV, Pearce FB, et al. Is the “perfect Fontan” operation routinely achievable in the modern era? Cardiol Young. 2008;18(3):328–36.

    Article  PubMed  Google Scholar 

  13. Soerensen DD, Pekkan K, Sundareswaran KS, Yoganathan AP. New power loss optimized Fontan connection evaluated by calculation of power loss using high resolution PC-MRI and CFD. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2004;2:1144–7

  14. • Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation. 2011;124(11 Suppl):S204–10. Comparison of surgical and hybrid stage 1 palliation strategies. Compares differences in systemic and cerebral oxygen delivery with different strategies.

    Article  PubMed  Google Scholar 

  15. Moghadam ME, Migliavacca F, Vignon-Clementel IE, Hsia TY, Marsden AL. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J Biomech Eng. 2012;134(5):051002.

    Article  PubMed  Google Scholar 

  16. Hsia TY, Migliavacca F, Pennati G, Balossino R, Dubini G, de Leval MR, et al. Management of a stenotic right ventricle-pulmonary artery shunt early after the Norwood procedure. Ann Thorac Surg. 2009;88(3):830–7. discussion 7–8.

    Article  PubMed  Google Scholar 

  17. DeGroff CG. Modeling the Fontan circulation: where we are and where we need to go. Pediatr Cardiol. 2008;29(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  18. Pekkan K, Whited B, Kanter K, Sharma S, de Zelicourt D, Sundareswaran K, et al. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med Biol Eng Comput. 2008;46(11):1139–52.

    Article  PubMed  Google Scholar 

  19. Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, Chan FP, et al. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg. 2009;137(2):394–403 e2.

    Article  PubMed  Google Scholar 

  20. Nordmeyer J, Lurz P, Tsang VT, Coats L, Walker F, Taylor AM, et al. Effective transcatheter valve implantation after pulmonary homograft failure: a new perspective on the Ross operation. J Thorac Cardiovasc Surg. 2009;138(1):84–8.

    Article  PubMed  Google Scholar 

  21. Frigiola A, Redington AN, Cullen S, Vogel M. Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation. 2004;110(11 Suppl 1):II153–7.

    PubMed  CAS  Google Scholar 

  22. Giardini A, Specchia S, Coutsoumbas G, Donti A, Formigari R, Fattori R, et al. Impact of pulmonary regurgitation and right ventricular dysfunction on oxygen uptake recovery kinetics in repaired tetralogy of Fallot. Eur J Heart Fail. 2006;8(7):736–43.

    Article  PubMed  Google Scholar 

  23. Ghai A, Silversides C, Harris L, Webb GD, Siu SC, Therrien J. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002;40(9):1675–80.

    Article  PubMed  Google Scholar 

  24. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356(9234):975–81.

    Article  PubMed  CAS  Google Scholar 

  25. Gatzoulis MA, Till JA, Somerville J, Redington AN. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation. 1995;92(2):231–7.

    Article  PubMed  CAS  Google Scholar 

  26. Quail MA, Frigiola A, Giardini A, Muthurangu V, Hughes M, Lurz P, et al. Impact of pulmonary valve replacement in tetralogy of Fallot with pulmonary regurgitation: a comparison of intervention and nonintervention. Ann Thorac Surg. 2012;94(5):1619–26.

    Article  PubMed  Google Scholar 

  27. • Capelli C, Taylor AM, Migliavacca F, Bonhoeffer P, Schievano S. Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos Trans A Math Phys Eng Sci. 2010;368(1921):3027–38. This paper explores the ability of models to extend the range of device applicability in heterogenous patient anatomies.

    Article  PubMed  Google Scholar 

  28. Schievano S, Coats L, Migliavacca F, Norman W, Frigiola A, Deanfield J, et al. Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson. 2007;9(4):687–95.

    Article  PubMed  Google Scholar 

  29. Schievano S, Taylor AM, Capelli C, Coats L, Walker F, Lurz P, et al. First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. EuroIntervention. 2010;5(6):745–50.

    Article  PubMed  Google Scholar 

  30. Nordmeyer J, Khambadkone S, Coats L, Schievano S, Lurz P, Parenzan G, et al. Risk stratification, systematic classification, and anticipatory management strategies for stent fracture after percutaneous pulmonary valve implantation. Circulation. 2007;115(11):1392–7.

    Article  PubMed  Google Scholar 

  31. Schievano S, Petrini L, Migliavacca F, Coats L, Nordmeyer J, Lurz P, et al. Finite element analysis of stent deployment: understanding stent fracture in percutaneous pulmonary valve implantation. J Interv Cardiol. 2007;20(6):546–54.

    Article  PubMed  Google Scholar 

  32. • Schievano S, Taylor AM, Capelli C, Lurz P, Nordmeyer J, Migliavacca F, et al. Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J Biomech. 2010;43(4):687–93. Utilisation of modeling strategies to predict device failure.

    Article  PubMed  Google Scholar 

  33. • Capelli C, Bosi GM, Cerri E, Nordmeyer J, Odenwald T, Bonhoeffer P, et al. Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput. 2012;50(2):183–92. This study uses computational models to test the deployment of transcatheter devices in the aortic position. This paper identifies the potential utility of patient specific models to aid device size selection and test deployment safety (e.g. coronary artery occlusion).

    Article  PubMed  CAS  Google Scholar 

  34. Bosi GM, Capelli C, Khambadkone S, Cosentino D, Taylor AM, Schievano S. Selecting the best device - A patient specific finite element study for Percutaneou Valve Implantation. 10th Symposium on Endocardiovascular Biomechanics Research; May; Marseille France. http://www.congres-ebr.com/presentations/jeudi/apres-midi/Bosi/index.html2012.

  35. Quail MA, Taylor AM. Valvular disease: Super size me? Annular size and paravalvular leak after TAVR. Nature reviews. Cardiology. 2012;9(5):265–6.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Michael A. Quail is employed by the University College London; he has received grant support from the British Heart Foundation.

Andrew M. Taylor has been a consultant for Medtronic Inc.; is employed by the University College London; has received grant support from NIHR, Heart Research UK, Fondation Leducq, BHF; and has received honoraria and travel/accommodations expenses covered or reimbursed from Siemens Medical Solutions.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Quail.

Additional information

This article is part of the Topical Collection on Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quail, M.A., Taylor, A.M. Computer Modeling to Tailor Therapy for Congenital Heart Disease. Curr Cardiol Rep 15, 395 (2013). https://doi.org/10.1007/s11886-013-0395-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0395-x

Keywords

Navigation