Skip to main content
Log in

The role of integrated PET-CT scar maps for guiding ventricular tachycardia ablations

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Reentrant ventricular tachycardia is the next emerging frontier in electrophysiology. Current ablation strategies rely on endocardial voltage measurements to identify myocardial scar and guide catheter ablation procedures. However, this voltage mapping approach has several inherent limitations. In patients with structural heart disease, positron emission tomography (PET)/CT has the potential to provide supplementary scar characterization by displaying additional metabolic (by PET) and morphologic (by CT) tissue-specific information. Three-dimensional scar maps can be created from the imaging datasets, which are uploaded into clinical mapping systems, and can facilitate substrate-guided ablation procedures. This has the potential to shorten procedure times, decrease complications, and improve the procedural success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. McCullough PA, Philbin EF, Spertus JA, et al.: Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol 2002, 39:60–69.

    Article  PubMed  Google Scholar 

  2. Redfield MM: Heart failure—an epidemic of uncertain proportions. N Engl J Med 2002, 347:1442–1444.

    Article  PubMed  Google Scholar 

  3. Bardy GH, Lee KL, Mark DB, et al.: Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005, 352:225–237.

    Article  PubMed  CAS  Google Scholar 

  4. Moss AJ, Zareba W, Hall WJ, et al.: Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002, 346:877–883.

    Article  PubMed  Google Scholar 

  5. Morady F, Harvey M, Kalbfleisch SJ, et al.: Radiofrequency catheter ablation of ventricular tachycardia in patients with coronary artery disease. Circulation 1993, 87:363–372.

    PubMed  CAS  Google Scholar 

  6. Stevenson WG, Khan H, Sager P, et al.: Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 1993, 88:1647–1670.

    PubMed  CAS  Google Scholar 

  7. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E: Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation 2000, 101:1288–1296.

    PubMed  CAS  Google Scholar 

  8. Hunold P, Schlosser T, Vogt FM, et al.: Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 2005, 184:1420–1426.

    PubMed  Google Scholar 

  9. de Bakker JM, van Capelle FJ, Janse MJ, et al.: Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 1988, 77:589–606.

    PubMed  Google Scholar 

  10. de Bakker JM, van Capelle FJ, Janse MJ, et al.: Slow conduction in the infarcted human heart. ‘Zigzag’ course of activation. Circulation 1993, 88:915–926.

    PubMed  Google Scholar 

  11. Nazarian S, Bluemke DA, Lardo AC, et al.: Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 2005, 112:2821–2825.

    Article  PubMed  Google Scholar 

  12. Stevenson WG, Friedman PL, Kocovic D, et al.: Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation 1998, 98:308–314.

    PubMed  CAS  Google Scholar 

  13. Oza S, Wilber DJ: Substrate-based endocardial ablation of postinfarction ventricular tachycardia. Heart Rhythm 2006, 3:607–609.

    Article  PubMed  Google Scholar 

  14. Verma A, Marrouche NF, Schweikert RA, et al.: Relationship between successful ablation sites and the scar border zone defined by substrate mapping for ventricular tachycardia post-myocardial infarction. J Cardiovasc Electrophysiol 2005, 16:465–471.

    Article  PubMed  Google Scholar 

  15. Gepstein L, Hayam G, Ben Haim SA: A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 1997, 95:1611–1622.

    PubMed  CAS  Google Scholar 

  16. Kim RJ, Fieno DS, Parrish TB, et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999, 100:1992–2002.

    PubMed  CAS  Google Scholar 

  17. Lima JA, Judd RM, Bazille A, et al.: Regional heterogeneity of human myocardial infarcts demonstrated by contrastenhanced MRI. Potential mechanisms. Circulation 1995, 92:1117–1125.

    PubMed  CAS  Google Scholar 

  18. Rehwald WG, Fieno DS, Chen EL, et al.: Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 2002, 105:224–229.

    Article  PubMed  Google Scholar 

  19. Faris OP, Shein M: Food and Drug Administration perspective: magnetic resonance imaging of pacemaker and implantable cardioverter-defibrillator patients. Circulation 2006, 114:1232–1233.

    Article  PubMed  Google Scholar 

  20. Marckmann P, Skov L, Rossen K, et al.: Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 2006, 17:2359–2362.

    Article  PubMed  Google Scholar 

  21. Lardo AC, Cordeiro MA, Silva C, et al.: Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006, 113:394–404.

    Article  PubMed  Google Scholar 

  22. Mahnken AH, Koos R, Katoh M, et al.: Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 2005, 45:2042–2047.

    Article  PubMed  Google Scholar 

  23. Brunken R, Tillisch J, Schwaiger M, et al.: Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 1986, 73:951–963.

    PubMed  CAS  Google Scholar 

  24. Maes A, Flameng W, Nuyts J, et al.: Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994, 90:735–745.

    PubMed  CAS  Google Scholar 

  25. Tamaki N, Kawamoto M, Tadamura E, et al.: Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation 1995, 91:1697–1705.

    PubMed  CAS  Google Scholar 

  26. Yoshida K, Gould KL: Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993, 22:984–997.

    Article  PubMed  CAS  Google Scholar 

  27. Jain D, Strauss HW: Principles of cardiovascular imaging. In Atlas of Nuclear Cardiology. Edited by Dilsizian V, Narula J. Philadelphia: Current Medicine; 2003:1–19.

    Google Scholar 

  28. Chareonthaitawee P, Schaefers K, Baker CS, et al.: Assessment of infarct size by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose: a new absolute threshold technique. Eur J Nucl Med Mol Imaging 2002, 29:203–215.

    Article  PubMed  Google Scholar 

  29. Higuchi T, Nekolla SG, Jankaukas A, et al.: Characterization of normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med 2007, 48:288–294.

    PubMed  Google Scholar 

  30. Berry JJ, Hoffman JM, Steenbergen C, et al.: Human pathologic correlation with PET in ischemic and nonischemic cardiomyopathy. J Nucl Med 1993, 34:39–47.

    PubMed  CAS  Google Scholar 

  31. Kuhl HP, Beek AM, van der Weerdt AP, et al.: Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2003, 41:1341–1348.

    Article  PubMed  Google Scholar 

  32. Kornowski R, Hong MK, Leon MB: Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation 1998, 98:1837–1841.

    PubMed  CAS  Google Scholar 

  33. Gyongyosi M, Sochor H, Khorsand A, et al.: Online myocardial viability assessment in the catheterization laboratory via NOGA electroanatomic mapping: quantitative comparison with thallium-201 uptake. Circulation 2001, 104:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  34. Fuchs S, Hendel RC, Baim DS, et al.: Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. Am J Cardiol 2001, 87:874–880.

    Article  PubMed  CAS  Google Scholar 

  35. Gyongyosi M, Khorsand A, Sochor H, et al.: Characterization of hibernating myocardium with NOGA electroanatomic endocardial mapping. Am J Cardiol 2005, 95:722–728.

    Article  PubMed  Google Scholar 

  36. Koch KC, vom DJ, Wenderdel M, et al.: Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J Am Coll Cardiol 2001, 38:91–98.

    Article  PubMed  CAS  Google Scholar 

  37. Botker HE, Lassen JF, Hermansen F, et al.: Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2001, 103:1631–1637.

    PubMed  CAS  Google Scholar 

  38. Keck A, Hertting K, Schwartz Y, et al.: Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J Am Coll Cardiol 2002, 40:1067–1074.

    Article  PubMed  Google Scholar 

  39. Wiggers H, Botker HE, Sogaard P, et al.: Electromechanical mapping versus positron emission tomography and single photon emission computed tomography for the detection of myocardial viability in patients with ischemic cardiomyopathy. J Am Coll Cardiol 2003, 41:843–848.

    Article  PubMed  Google Scholar 

  40. Callans DJ, Ren JF, Michele J, et al.: Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation 1999, 100:1744–1750.

    PubMed  CAS  Google Scholar 

  41. Gepstein L, Goldin A, Lessick J, et al.: Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 1998, 98:2055–2064.

    PubMed  CAS  Google Scholar 

  42. Kornowski R, Hong MK, Gepstein L, et al.: Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation 1998, 98:1116–1124.

    PubMed  CAS  Google Scholar 

  43. Shekhar R, Walimbe V, Raja S, et al.: Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. J Nucl Med 2005, 46:1488–1496.

    PubMed  Google Scholar 

  44. Francone M, Carbone I, Danti M, et al.: ECG-gated multidetector row spiral CT in the assessment of myocardial infarction: correlation with non-invasive angiographic findings. Eur Radiol 2006, 16:15–24.

    Article  PubMed  Google Scholar 

  45. Nieman K, Cury RC, Ferencik M, et al.: Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am J Cardiol 2006, 98:303–308.

    Article  PubMed  Google Scholar 

  46. Lessick J, Mutlak D, Rispler S, et al.: Comparison of multidetector computed tomography versus echocardiography for assessing regional left ventricular function. Am J Cardiol 2005, 96:1011–1015.

    Article  PubMed  Google Scholar 

  47. Gerber BL, Belge B, Legros GJ, et al.: Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006, 113:823–833.

    Article  PubMed  Google Scholar 

  48. Di Carli MF, Dorbala S, Meserve J, et al.: Clinical myocardial perfusion PET/CT. J Nucl Med 2007, 48:783–793.

    Article  PubMed  Google Scholar 

  49. Dickfeld T, Calkins H, Zviman M, et al.: Anatomic stereotactic catheter ablation on three-dimensional magnetic resonance images in real time. Circulation 2003, 108:2407–2413.

    Article  PubMed  Google Scholar 

  50. Dong J, Calkins H, Solomon SB, et al.: Integrated electroanatomic mapping with three-dimensional computed tomographic images for real-time guided ablations. Circulation 2006, 113:186–194.

    Article  PubMed  Google Scholar 

  51. Dong J, Dickfeld T, Dalal D, et al.: Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2006, 17:459–466.

    Article  PubMed  Google Scholar 

  52. Dickfeld T, Lodge M, Voudouris A, et al.: Anatomic-metabolic scar imaging with positron emission tomography for guidance of ventricular tachycardia ablations. Heart Rhythm 2006, 3(1S):S74.

    Article  Google Scholar 

  53. Dickfeld T, Voudouris A, Jeudy J, et al.: Fusion imaging with positron emission tomography/computer tomography (PET/CT) to guide ventricular tachycardia ablations. Circulation 2006, 114:3096.

    Google Scholar 

  54. Dickfeld T, Lei P, Dilsizian V, et al.: Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. J Am Coll Cardiol 2008, In press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Dickfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickfeld, T., Kocher, C. The role of integrated PET-CT scar maps for guiding ventricular tachycardia ablations. Curr Cardiol Rep 10, 149–157 (2008). https://doi.org/10.1007/s11886-008-0025-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-008-0025-1

Keywords

Navigation