Skip to main content
Log in

The utility of intracardiac echocardiography in interventional electrophysiology

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

With the mounting of an ultrasound transducer on the end of a percutaneously placed catheter, intracardiac echocardiography is now possible. It has become clear that endocardial anatomy plays a critical role in a variety of cardiac arrhythmias. The ability to visualize this anatomy, and it's relationship to mapping and ablation catheters, may greatly enhance the safety and efficacy of catheter ablation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Baim DS, Grossman WG: Percutaneous approach and transseptal catheterization. In Cardiac Catheterization and Angiography. Philadelphia: Lea and Febiger; 1986, 59–75.

    Google Scholar 

  2. Lesh MD, Van Hare GF, Scheinman MM, et al. A comparison of the retrograde and transseptal methods for ablation of left free-wall accessory pathways. J Am Coll Cardiol 1993, 22:542–549.

    Article  PubMed  CAS  Google Scholar 

  3. Lesh MD, Van Hare GF, Epstein LM, et al.: Radiofrequency catheter ablation of atrial arrhythmias-results and mechanisms. Circulation 1994, 89:1074–1089.

    PubMed  CAS  Google Scholar 

  4. Mitchel JF, Gillam LD, Sanzobrino BW, et al.: Intracardiac ultrasound imaging during transseptal catheterization. Chest 1995, 108:104–108.

    PubMed  CAS  Google Scholar 

  5. Epstein LM, Smith TS, TenHoff H: Non-fluoroscopic transseptal catheterization: the safety and efficacy of intracardiac echocardiographic guidance. J Cardiovasc Electrophysiol 1998, 9:625–630. This article demonstrates the utility of ICE guidance for performing transseptal catheterization.

    Article  PubMed  CAS  Google Scholar 

  6. Doud EG, Kalbfleisch SJ, Hummel JD: Intracardiac echocardiography to guide transseptal left heart catheterization for radiofrequency catheter ablation. J Cardiovasc Electrophysiol 1999, 10:358–363. This article demonstrates the utility of ICE guidance for performing transseptal catheterization.

    Article  Google Scholar 

  7. Epstein LM, Mitchell MA, Smith TW, Haines DE: A comparative study of fluoroscopy and intracardiac echocardiographic guidance for the creation of linear atrial lesions. Circulation 1998, 98:1796–1801. Demonstrated the superiority of ICE to fluoroscopy to guide the creation of linear lesions for the treatment of atrial fibrillation.

    PubMed  CAS  Google Scholar 

  8. Chu E, Kalman JM, Kwasman MA, et al.: Intracardiac echocardiography during radiofrequency catheter ablation of cardiac arrhythmias in man. J Am Coll Cardiol 1994, 24:1351–1357.

    Article  PubMed  CAS  Google Scholar 

  9. Kalman JM, Fitzpatrick AP, Olgin JE, et al.: Biophysical characteristics of radiofrequency lesion formation in vivo: dynamics of catheter tip-tissue contact evaluated by intracardiac echocardiography. Am Heart J 1997, 133:8–18.

    Article  PubMed  CAS  Google Scholar 

  10. Tardif JC, Groeneveld PW, Wang PJ, et al.: Intracardiac echocardiographic guidance during microwave catheter ablation. J Am Society Echo 1999, 12:41–47. Demonstrated the use of ICE to guide ablation with microwave energy.

    Article  CAS  Google Scholar 

  11. Keane D, Houghtaling C, Qin H, et al.: Linear cryo ablation of the cavo tricuspid isthmus under guidance by phased array intracardiac echocardiography. J Am Coll Cardiol 2000, 35:126A. Demonstrated the use of ICE to guide ablation with cryotherapy.

    Google Scholar 

  12. Zhou L, Keane D, Reed G, Ruskin J: Thromboembolic complications of cardiac radiofrequency catheter ablation: a review of the reported incidence, pathogenesis and current research. J Cardiovasc Electrophysiol 1999, 10:611–620. A review of the incidence, causes, and potential prevention of thromboembolic complications of catheter ablation procedures.

    Article  PubMed  CAS  Google Scholar 

  13. Lee RJ, Kalman JM, Fitzpatrick AP, et al.: Radiofrequency catheter modification of the sinus node for "“inappropriate”" sinus tachycardia. Circulation 1995, 92:2919–2928.

    PubMed  CAS  Google Scholar 

  14. Kalman JM, Lee RJ, Fisher WG, et al.: Radiofrequency catheter modification of sinus pacemaker function guided by intracardiac echocardiography. Circulation 1995, 92:3070–3081.

    PubMed  CAS  Google Scholar 

  15. Callans DJ, Ren JF, Schwartzman D, et al.: Narrowing of the superior vena cava right atrium junction during radiofrequency ablation of inappropriate sinus tachycardia: analysis with intracardiac echocardiography. J Am Coll Cardiol 1999, 33:1667–1670. Demonstrated the utility of ICE to detect narrowing of the SVC during ablation, thereby preventing further damage.

    Article  PubMed  CAS  Google Scholar 

  16. Fisher, WG, Pelini MA, Bacon ME: Adjunctive intracardiac echocardiography to guide slow pathway ablation in human atrioventricular nodal reentrant tachycardia: anatomic insights. Circulation 1997, 96:3021–3029.

    PubMed  CAS  Google Scholar 

  17. Olgin JE, Kalman JM, Fitzpatrick AP, Lesd MD: The role of right atrial endocardial structures as barriers to conduction during human type 1 atrial flutter: activation and entrainment mapping guided by intracardiac echocardiography. Circulation 1995, 92:1839–1848.

    PubMed  CAS  Google Scholar 

  18. Schumacher B, Jung W, Schmidt H, et al.: Transverse conduction capabilities of the crista terminalis in patients with atrial flutter and fibrillation. J Am Coll Cardiol 1999, 34:363–373.

    Article  PubMed  CAS  Google Scholar 

  19. Kalman JM, Olgin JE, Karch MR, et al.: "“Cristal tachycardias”": origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography. J Am Coll Cardiol 1998, 31:451–459. ICE imaging used to accurately locate the anatomic origins of atrial tachycardias.

    Article  PubMed  CAS  Google Scholar 

  20. Cox JL, Boineau JP, Schuessler RB, et al.: Modification of the maze procedure for atrial flutter and atrial fibrillation: I. Rationale and surgical results. J Thoracic Cardiovasc Surg 1995, 110:473–484.

    Article  CAS  Google Scholar 

  21. Cox JL, Schuessler RB, Lappas DG, Boineau JP: An 8 1/2 -year clinical experience with surgery for atrial fibrillation. Ann Surg 1996, 224:267–275.

    Article  PubMed  CAS  Google Scholar 

  22. Swartz JF, Pellersels G, Silvers J, et al.: A catheter-based curative approach to atrial fibrillation. Circulation 1994, 90:I-335.

    Google Scholar 

  23. Haisaguerre M, Gencel L, Fischer B, et al.: Successful catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 1994, 5:1045–1052.

    Article  Google Scholar 

  24. Haissagurre M, Jais P, Shah DC, et al.: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998, 339:659–666. Demonstrated that contrary to prior beliefs, atrial fibrillation in some patients may be due to an ectopic focus in the pulmonary veins, and these foci can be ablated.

    Article  Google Scholar 

  25. Arruda M, Wang ZG, Patel A, et al.: Intracardiac echocardiography identifies pulmonary vein ostia more accurately than conventional angiography. J Am Coll Cardiol 2000, 35:110A. Demonstrated the use of ICE to image pulmonary veins.

    Google Scholar 

  26. Olgin JE, Kalman JM, Chin M, et al.: Electrophysiological effects of long, linear atrial lesions placed under intracardiac ultrasound guidance. Circulation 1997, 96:2715–2721.

    PubMed  CAS  Google Scholar 

  27. Avitall B, Helms RW, Chiang W, Periman BA: Nonlinear atrial radiofrequency lesions are arrhythmogenic: a study of skipped lesion in the normal atria. Circulation 1995, 92:I-265.

    Google Scholar 

  28. Packer RD, Wahl MR, Asirvatham S, et al.: Feasibility of 4-dimensional myocardial doppler tissue velocity imaging for full thickness myocardial mapping. J Am Coll Cardiol 2000, 35:423A.

    Google Scholar 

  29. Wahl MR, Roman-Gonzalez J, Johnson SB, et al.: Four dimensional myocardial modeling from orthigonal rotational intracardiac ultrasound. J Am Coll Cardiol 2000, 35:119A. Report of the potential to create detailed 4-dimensional models of the beating heart, thereby marrying anatomic and electrical mapping.

    Article  Google Scholar 

  30. Lederman RJ, Richards M, Avelar E, et al.: Intracardiac echocardiography permits high spatial resolution for percutaneous local myocardial delivery using a needle injection catheter. J Am Coll Cardiol 2000, 35:5A. Demonstrated the utility of ICE to guide intracardiac injection at a time when new therapies may require this technique.

    Google Scholar 

  31. Wilber DJ, Arruda M, Wang ZG, Patel A: Circumferential ablation of pulmonary vein ostia with an ultrasound ablation catheter: acute and chronic studies in a canine model. Am Coll Cardiol 2000, 35:110A. Demonstrated the feasibility of ultrasound as an ablative energy to potentially cure atrial fibrillation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, L.M. The utility of intracardiac echocardiography in interventional electrophysiology. Curr Cardiol Rep 2, 329–334 (2000). https://doi.org/10.1007/s11886-000-0089-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-000-0089-z

Keywords

Navigation