Skip to main content

The Role of Imaging Techniques in Electrophysiologic Procedures

  • Chapter
  • First Online:
Practical 3D Echocardiography

Abstract

Electrophysiology procedures have evolved to be among the most utilized for a variety of cardiac rhythm disorders over the last three decades. A part of this success is because of improvements in signal processing, catheter design, and three-dimensional mapping technology. However, present ablation procedures for the most common arrhythmias like atrial fibrillation, ventricular fibrillation, and ventricular tachycardia in structural heart disease remain challenging with success rates less than 50% and significant continued complication rates. For further evolution, a critical piece of the electrophysiologist’s arsenal is real-time imaging to appreciate the underlying anatomy, anatomical variance, and pathology while mapping and ablating.

The focus of this chapter is on the role of non-invasive imaging techniques in EP, and in particular 3D TEE in pre-procedural assessment and procedural guidance of cavo-tricuspid isthmus radiofrequency (RF) ablation and pulmonary vein isolation using either cryo- or radiofrequency energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asirvatham SJ. Correlative anatomy and electrophysiology for the interventional electrophysiologist: right atrial flutter. J Cardiovasc Electrophysiol. 2009;20:113–22.

    Article  Google Scholar 

  2. Hisazaki K, Kaseno K, Miyazaki S, Amaya N, Hasegawa K, Shiomi Y, Tama N, Ikeda H, Fukuoka Y, Morishita T, Ishida K, Uzui H, Tada H. Intra-procedural evaluation of the cavo-tricuspid isthmus anatomy with different techniques: comparison of angiography and intracardiac echocardiography. Heart Vessel. 2019 Oct;34(10):1703–9.

    Article  Google Scholar 

  3. Kajihara K, Nakano Y, Hirai Y, Ogi H, Oda N, Suenari K, Makita Y, Sairaku A, Tokuyama T, Motoda C, Fujiwara M, Watanabe Y, Kiguchi M, Kihara Y. Variable procedural strategies adapted to anatomical characteristics in catheter ablation of the cavotricuspid isthmus using a preoperative multidetector computed tomography analysis. J Cardiovasc Electrophysiol. 2013 Dec;24(12):1344–51.

    Article  Google Scholar 

  4. Al Aloul B, Sigurdsson G, Adabag S, Li JM, Dykoski R, Tholakanahalli VN. Atrial flutter ablation and risk of right coronary artery injury. J Clin Med Res. 2015 Apr;7(4):270–3.

    Article  Google Scholar 

  5. Regoli F, Faletra F, Marcon S, et al. Anatomic characterization of cavotricuspid isthmus by 3D transesophageal echocardiography in patients undergoing radiofrequency ablation of typical atrial flutter. Eur Heart J Cardiovasc Imaging. 2018;19:84–91.

    Article  Google Scholar 

  6. Regoli F, Faletra FF, Nucifora G, et al. Feasibility and acute efficacy of radiofrequency ablation of cavotricuspid isthmus-dependent atrial flutter guided by real-time 3D TEE. JACC Cardiovasc Imaging. 2011;4(7):716–26.

    Google Scholar 

  7. Hassani C, Saremi F. Comprehensive cross-sectional imaging of the pulmonary veins. Radiographics. 2017 Nov–Dec;37(7):1928–54.

    Article  Google Scholar 

  8. Higuchi K, Cates J, Gardner G, Morris A, Burgon NS, Akoum N, Marrouche NF. The spatial distribution of late gadolinium enhancement of left atrial magnetic resonance imaging in patients with atrial fibrillation. JACC Clin Electrophysiol. 2018 Jan;4(1):49–58.

    Article  Google Scholar 

  9. Faletra FF, Nucifora G, Regoli F, Ho SY, Moccetti T, Auricchio A. Anatomy of pulmonary veins by real-time 3D TEE: implications for catheter-based pulmonary vein ablation. JACC Cardiovasc Imaging. 2012 Apr;5(4):456–62.

    Article  Google Scholar 

  10. Acena M, Regoli F, Faletra FF, et al. 3D real-time TEE during pulmonary vein isolation in atrial fibrillation. JACC Cardiovasc Imaging. 2014;7:737–8.

    Article  Google Scholar 

  11. Ottaviano L, Chierchia GB, Bregasi A, et al. Cryoballoon ablation for atrial fibrillation guided by real-time three-dimensional transoesophageal echocardiography: a feasibility study. Europace. 2013;15:944–50.

    Article  Google Scholar 

  12. Sun YJ, Yin XM, Cong T, et al. Comparison of cryoballoon ablation for atrial fibrillation guided by real-time three-dimensional transesophageal echocardiography vs. contrast agent injection. Chin Med J (Engl). 2019;132:285–93.

    Article  Google Scholar 

  13. Herczeg S, Walsh K, Keaney JJ, et al. Quantitative assessment of left atrial scar using high-density voltage mapping and a novel automated voltage analysis tool. [published online ahead of print, 2019 Jun 5]. J Interv Card Electrophysiol. 2020;59(1):5–12.

    Article  Google Scholar 

  14. Holmes D, Fish JM, Byrd IA, et al. Contact sensing provides a highly accurate means to titrate radiofrequency ablation lesion depth. J Cardiovasc Electrophysiol. 2011;22(6):684–90.

    Article  Google Scholar 

  15. Gard J, et al. Outflow tract ventricular tachycardia. Texas Heart Inst J. 2012;39(4):526–8.

    Google Scholar 

  16. Abouezzeddine O, Suleiman M, Buescher T, Kapa S, Friedman PA, Jahangir A, Mears JA, Ladewig DJ, Munger TM, Hammill SC, Packer DL, Asirvatham SJ. Relevance of endocavitary structures in ablation procedures for ventricular tachycardia. J Cardiovasc Electrophysiol 2010 Mar;21(3):245–254.

    Google Scholar 

  17. Hai JJ, Desimone CV, Vaidya VR, Asirvatham SJ. Endocavitary structures in the outflow tract: anatomy and electrophysiology of the conus papillary muscles. J Cardiovasc Electrophysiol. 2014;25(1):94–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco F. Faletra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faletra, F.F., Regoli, F., Leo, L.A., Paiocchi, V.L., Schlossbauer, S.A., Asirvatham, S.J. (2022). The Role of Imaging Techniques in Electrophysiologic Procedures. In: Maalouf, J.F., Faletra, F.F., Asirvatham, S.J., Chandrasekaran, K. (eds) Practical 3D Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-030-72941-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72941-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72940-0

  • Online ISBN: 978-3-030-72941-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics