Skip to main content
Log in

Coronary Microvascular Dysfunction: A Practical Approach to Diagnosis and Management

  • Women and Ischemic Heart Disease (J.M. Peña and F. Lin, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide an overview of diagnostic and treatment considerations in patients with coronary microvascular dysfunction (CMD) in the absence of obstructive coronary artery disease (CAD).

Recent Findings

The prevalence of obstructive CAD in unselected patient populations referred for evaluation of angina is less than 10%. A significant proportion of patients with angina and no obstructive CAD have CMD, a condition associated with impaired cardiovascular prognosis. Non-invasive and invasive evaluation of coronary microvascular function is feasible and widely available, yet CMD is underdiagnosed and undertreated. A patient-tailored treatment approach guided by coronary microvascular testing shows promising results for patient-reported outcomes of symptom burden and quality of life.

Summary

Coronary microvascular testing should be considered in angina patients with no obstructive CAD, before other causes of chest pain are explored. A patient-tailored treatment approach guided by a complete evaluation of epicardial anatomy and macro-and microvascular function may help optimize treatment strategy and prevent unnecessary medical interventions. More research is needed to establish the long-term effect of patient-tailored therapies on risk reduction in CMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. GBD. Mortality and Causes of Death Collaborators, Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England). 2015;388(2016):1459–544. https://doi.org/10.1016/S0140-6736(16)31012-1.

    Article  Google Scholar 

  2. Jespersen L, Hvelplund A, Abildstrøm SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33:734–44. https://doi.org/10.1093/eurheartj/ehr331.

    Article  PubMed  Google Scholar 

  3. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95. https://doi.org/10.1056/nejmoa0907272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radico F, Zimarino M, Fulgenzi F, Ricci F, Di Nicola M, Jespersen L, et al. Determinants of long-term clinical outcomes in patients with angina but without obstructive coronary artery disease: a systematic review and meta-analysis. Eur Heart J. 2018;39:2135–46. https://doi.org/10.1093/eurheartj/ehy185.

    Article  PubMed  Google Scholar 

  5. Bechsgaard DF, Gustafsson I, Michelsen MM, Mygind ND, Pena A, Suhrs HE, et al. Vital exhaustion in women with chest pain and no obstructive coronary artery disease: the iPOWER study. Evid Based Ment Health. 2020. https://doi.org/10.1136/ebmental-2020-300175.

  6. Jespersen L, Abildstrøm SZ, Hvelplund A, Prescott E. Persistent angina: highly prevalent and associated with long-term anxiety, depression, low physical functioning, and quality of life in stable angina pectoris. Clin Res Cardiol. 2013;102:571–81. https://doi.org/10.1007/s00392-013-0568-z.

    Article  PubMed  Google Scholar 

  7. Handberg EM, Eastwood JA, Eteiba W, Johnson BD, Krantz DS, Thompson DV, et al. Clinical implications of the Women’s Ischemia Syndrome Evaluation: inter-relationships between symptoms, psychosocial factors and cardiovascular outcomes. Women Health. 2013;9:479–90. https://doi.org/10.2217/whe.13.50.

    Article  CAS  Google Scholar 

  8. Jespersen L, Abildstrøm SZ, Hvelplund A, Galatius S, Madsen JK, Pedersen F, et al. Symptoms of angina pectoris increase the probability of disability pension and premature exit from the workforce even in the absence of obstructive coronary artery disease. Eur Heart J. 2013;34:3294–303. https://doi.org/10.1093/eurheartj/eht395.

    Article  PubMed  Google Scholar 

  9. Shaw LJ, Merz CNB, Pepine CJ, Reis SE, Bittner V, Kip KE, et al. The economic burden of angina in women with suspected ischemic heart disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation. Circulation. 2006;114:894–904. https://doi.org/10.1161/CIRCULATIONAHA.105.609990.

    Article  PubMed  Google Scholar 

  10. Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International. Eur Heart J. 2020;41:3504–20. https://doi.org/10.1093/eurheartj/ehaa503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brainin P, Frestad D, Prescott E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: a systematic review and meta-analysis. Int J Cardiol. 2018;254:1–9. https://doi.org/10.1016/j.ijcard.2017.10.052.

    Article  PubMed  Google Scholar 

  12. • Schroder J, Michelsen MM, Mygind ND, Suhrs HE, Bove KB, Bechsgaard DF, et al. Coronary flow velocity reserve predicts adverse prognosis in women with angina and no obstructive coronary artery disease: results from the iPOWER study. Eur Heart J. 2021;42:228–39. https://doi.org/10.1093/eurheartj/ehaa944Prognostic data from the iPOWER study showed an independent inverse association between coronary microvascular function, evaluated by TTDE CFVR, and adverse cardiovascular outcomes, primarily driven by an increased risk of myocardial infarction and heart failure.

    Article  PubMed  Google Scholar 

  13. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia. Results From the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–32. https://doi.org/10.1016/j.jacc.2010.01.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Douglas PS, Patel MR, Bailey SR, Dai D, Kaltenbach L, Brindis RG, et al. Hospital variability in the rate of finding obstructive coronary artery disease at elective, diagnostic coronary angiography. J Am Coll Cardiol. 2011;58:801–9. https://doi.org/10.1016/j.jacc.2011.05.019.

    Article  PubMed  Google Scholar 

  15. Reeh J, Therming CB, Heitmann M, Højberg S, Sørum C, Bech J, et al. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. Eur Heart J. 2019;40:1426–35. https://doi.org/10.1093/eurheartj/ehy806.

    Article  PubMed  Google Scholar 

  16. Patel MR, Dai D, Hernandez AF, Douglas PS, Messenger J, Garratt KN, et al. Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J. 2014;167:846–52.e2. https://doi.org/10.1016/j.ahj.2014.03.001.

    Article  PubMed  Google Scholar 

  17. Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20. https://doi.org/10.1016/j.ijcard.2017.08.068.

    Article  PubMed  Google Scholar 

  18. Bove KB, Michelsen MM, Schroder J, Suhrs HE, Bechsgaard DF, Mygind ND, et al. Impaired coronary flow velocity reserve is associated with cardiovascular risk factors but not with angina symptoms. Open Hear. 2021;8:e001486. https://doi.org/10.1136/openhrt-2020-001486.

    Article  Google Scholar 

  19. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27. https://doi.org/10.1161/CIRCULATIONAHA.113.008507.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36:3134–46. https://doi.org/10.1093/eurheartj/ehv100.

    Article  CAS  PubMed  Google Scholar 

  21. Crea F, Lanza GA, Camici PG, Coronary microvascular dysfunction, Springer, 2014. doi:https://doi.org/10.1007/978-88-470-5367-0.

  22. Crea F, Camici PG, Merz CNB. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35:1101–11. https://doi.org/10.1093/eurheartj/eht513.

    Article  PubMed  Google Scholar 

  23. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77. https://doi.org/10.1093/eurheartj/ehz425.

    Article  PubMed  Google Scholar 

  24. Kaski JC, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease: fundamental role of coronary microvascular dysfunction in the pathogenesis of angina pectoris. Circulation. 2018;138:1463–80. https://doi.org/10.1161/CIRCULATIONAHA.118.031373.

    Article  PubMed  Google Scholar 

  25. Bechsgaard DF, Gustafsson I, Michelsen MM, Mygind ND, Raft KF, Linde JJ, et al. Evaluation of computed tomography myocardial perfusion in women with angina and no obstructive coronary artery disease. Int J Card Imaging. 2020;36:367–82. https://doi.org/10.1007/s10554-019-01723-5.

    Article  Google Scholar 

  26. Fearon WF, Kobayashi Y. Invasive assessment of the coronary microvasculature: the index of microcirculatory resistance. Circ Cardiovasc Interv. 2017;10:e005361. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005361.

    Article  PubMed  Google Scholar 

  27. Fearon WF, Farouque HMO, Balsam LB, Cooke DT, Robbins RC, Fitzgerald PJ, et al. Comparison of coronary thermodilution and Doppler velocity for assessing coronary flow reserve. Circulation. 2003;108:2198–200. https://doi.org/10.1161/01.CIR.0000099521.31396.9D.

    Article  PubMed  Google Scholar 

  28. Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns R-JM, et al. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res. 2020;116:787–805. https://doi.org/10.1093/cvr/cvz301.

    Article  CAS  PubMed  Google Scholar 

  29. Williams RP, de Waard GA, De Silva K, Lumley M, Asrress K, Arri S, et al. Doppler Versus thermodilution-derived coronary microvascular resistance to predict coronary microvascular dysfunction in patients with acute myocardial infarction or stable angina pectoris. Am J Cardiol. 2018;121:1–8. https://doi.org/10.1016/j.amjcard.2017.09.012.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Caiati C, Montaldo C, Zedda N, Montisci R, Ruscazio M, Lai G, et al. Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol. 1999;34:1193–200. https://doi.org/10.1016/S0735-1097(99)00342-3.

    Article  CAS  PubMed  Google Scholar 

  31. Saraste M, Koskenvuo JW, Knuuti J, Toikka JO, Laine H, Niemi P, et al. Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol. 2001;21:114–22. https://doi.org/10.1046/j.1365-2281.2001.00296.x.

    Article  CAS  PubMed  Google Scholar 

  32. Prescott E, Abildstrøm SZ, Aziz A, Merz NB, Gustafsson I, Halcox J, et al. Improving diagnosis and treatment of women with angina pectoris and microvascular disease: the iPOWER study design and rationale. Am Heart J. 2014;167:452–8. https://doi.org/10.1016/j.ahj.2014.01.003.

    Article  PubMed  Google Scholar 

  33. Galderisi M, Cicala S, D’Errico A, de Divitiis O, de Simone G. Nebivolol improves coronary flow reserve in hypertensive patients without coronary heart disease. J Hypertens. 2004;22:2201–8. https://doi.org/10.1097/00004872-200411000-00024.

    Article  CAS  PubMed  Google Scholar 

  34. Olsen RH, Pedersen LR, Snoer M, Christensen TE, Ghotbi AA, Hasbak P, et al. Coronary flow velocity reserve by echocardiography: feasibility, reproducibility and agreement with PET in overweight and obese patients with stable and revascularized coronary artery disease. Cardiovasc Ultrasound. 2016;14:22. https://doi.org/10.1186/s12947-016-0066-3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Snoer M, Monk-Hansen T, Olsen RH, Pedersen LR, Nielsen OW, Rasmusen H, et al. Coronary flow reserve as a link between diastolic and systolic function and exercise capacity in heart failure. Eur Heart J Cardiovasc Imaging. 2013. https://doi.org/10.1093/ehjci/jes269.

  36. Michelsen MM, Mygind ND, Pena A, Olsen RH, Christensen TE, Ghotbi AA, et al. Transthoracic Doppler echocardiography compared with positron emission tomography for assessment of coronary microvascular dysfunction: the iPOWER study. Int J Cardiol. 2017;228:435–43. https://doi.org/10.1016/j.ijcard.2016.11.004.

    Article  PubMed  Google Scholar 

  37. Michelsen MM, Pena A, Mygind ND, Frestad D, Gustafsson I, Hansen HS, et al. Coronary flow velocity reserve assessed by transthoracic Doppler: the iPOWER study: factors influencing feasibility and quality. J Am Soc Echocardiogr. 2016;29:709–16. https://doi.org/10.1016/j.echo.2016.02.011.

    Article  PubMed  Google Scholar 

  38. Juarez-Orozco LE, Cruz-Mendoza JR, Guinto-Nishimura GY, Walls-Laguarda L, Casares-Echeverría LJ, Meave-Gonzalez A, et al. PET myocardial perfusion quantification: anatomy of a spreading functional technique. Clin Transl Imaging. 2018;6:47–60. https://doi.org/10.1007/s40336-018-0263-1.

    Article  Google Scholar 

  39. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27. https://doi.org/10.1161/CIRCULATIONAHA.114.011939.

    Article  PubMed  Google Scholar 

  40. Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med. 2018;59:273–93. https://doi.org/10.2967/jnumed.117.201368.

    Article  CAS  PubMed  Google Scholar 

  41. Byrne C, Kjaer A, Olsen NE, Forman JL, Hasbak P. Test–retest repeatability and software reproducibility of myocardial flow measurements using rest/adenosine stress Rubidium-82 PET/CT with and without motion correction in healthy young volunteers. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02140-1.

  42. Tahari AK, Lee A, Rajaram M, Fukushima K, Lodge MA, Lee BC, et al. Absolute myocardial flow quantification with (82)Rb PET/CT: comparison of different software packages and methods. Eur J Nucl Med Mol Imaging. 2014;41:126–35. https://doi.org/10.1007/s00259-013-2537-1.

    Article  PubMed  Google Scholar 

  43. Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using (82)Rb PET imaging: the RUBY-10 Study. JACC Cardiovasc Imaging. 2014;7:1119–27. https://doi.org/10.1016/j.jcmg.2014.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Panting JR, Gatehouse PD, Yang G-Z, Grothues F, Firmin DN, Collins P, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346:1948–53. https://doi.org/10.1056/nejmoa012369.

    Article  PubMed  Google Scholar 

  45. Lanza GA, Buffon A, Sestito A, Natale L, Sgueglia GA, Galiuto L, et al. Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol. 2008;51:466–72. https://doi.org/10.1016/j.jacc.2007.08.060.

    Article  PubMed  Google Scholar 

  46. Thomson LEJ, Wei J, Agarwal M, Haft-Baradaran A, Shufelt C, Mehta PK, Gill EB, Johnson BD, Kenkre T, Handberg EM, Li D, Sharif B, Berman DS, Petersen JW, Pepine CJ, Merz CNB, Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: a national heart, lung, and blood institute-sponsored study from the women’s ischemia syndrome evaluation, Circ Cardiovasc Imaging 8 (2015). https://doi.org/10.1161/CIRCIMAGING.114.002481.

  47. Doyle M, Weinberg N, Pohost GM, Merz CNB, Shaw LJ, Sopko G, et al. Prognostic value of global MR myocardial perfusion imaging in women with suspected myocardial ischemia and no obstructive coronary disease: results from the NHLBI–sponsored WISE (Women’s Ischemia Syndrome Evaluation) Study. JACC Cardiovasc Imaging. 2010;3:1030–6. https://doi.org/10.1016/j.jcmg.2010.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Karamitsos TD, Arnold JR, Pegg TJ, Francis JM, Birks J, Jerosch-Herold M, et al. Patients with syndrome X have normal transmural myocardial perfusion and oxygenation: a 3-T cardiovascular magnetic resonance imaging study. Circ Cardiovasc Imaging. 2012;5:194–200. https://doi.org/10.1161/CIRCIMAGING.111.969667.

    Article  PubMed  Google Scholar 

  49. Mygind ND, Pena A, Mide Michelsen M, Ali Qayyum A, Frestad D, Emil Christensen T, et al. Myocardial first pass perfusion assessed by cardiac magnetic resonance and coronary microvascular dysfunction in women with angina and no obstructive coronary artery disease. Scand J Clin Lab Invest. 2019;79:238–46. https://doi.org/10.1080/00365513.2019.1587670.

    Article  PubMed  Google Scholar 

  50. Shufelt CL, Thomson LEJ, Goykhman P, Agarwal M, Mehta PK, Sedlak T, et al. Cardiac magnetic resonance imaging myocardial perfusion reserve index assessment in women with microvascular coronary dysfunction and reference controls. Cardiovasc Diagn Ther. 2013;3:153–60. https://doi.org/10.3978/j.issn.2223-3652.2013.08.02.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60. https://doi.org/10.1016/S0140-6736(11)61335-4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kurita T, Sakuma H, Onishi K, Ishida M, Kitagawa K, Yamanaka T, et al. Regional myocardial perfusion reserve determined using myocardial perfusion magnetic resonance imaging showed a direct correlation with coronary flow velocity reserve by Doppler flow wire. Eur Heart J. 2009;30:444–52. https://doi.org/10.1093/eurheartj/ehn521.

    Article  PubMed  Google Scholar 

  53. Larghat AM, Maredia N, Biglands J, Greenwood JP, Ball SG, Jerosch-Herold M, et al. Reproducibility of first-pass cardiovascular magnetic resonance myocardial perfusion. J Magn Reson Imaging. 2013;37:865–74. https://doi.org/10.1002/jmri.23889.

    Article  PubMed  Google Scholar 

  54. Brown LAE, Onciul SC, Broadbent DA, Johnson K, Fent GJ, Foley JRJ, et al. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: Repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson. 2018;20:48. https://doi.org/10.1186/s12968-018-0462-y.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation. 1995;92:2135–41. https://doi.org/10.1161/01.CIR.92.8.2135.

    Article  CAS  PubMed  Google Scholar 

  56. Hein TW, Wang W, Zoghi B, Muthuchamy M, Kuo L. Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J Mol Cell Cardiol. 2001;33:271–82. https://doi.org/10.1006/jmcc.2000.1298.

    Article  CAS  PubMed  Google Scholar 

  57. Saab R, Hage FG. Vasodilator stress agents for myocardial perfusion imaging. J Nucl Cardiol. 2017;24:434–8. https://doi.org/10.1007/s12350-016-0408-4.

    Article  PubMed  Google Scholar 

  58. Di Lee S, Huang WC, Peng NJ, Hu C. Dipyridamole-induced adverse effects in myocardial perfusion scans: dynamic evaluation. IJC Heart Vasc. 2017;14:14–9. https://doi.org/10.1016/j.ijcha.2016.11.002.

    Article  Google Scholar 

  59. Müller CE, Jacobson KA. Xanthines as adenosine receptor antagonists. Handb Exp Pharmacol. 2011;200:151–99. https://doi.org/10.1007/978-3-642-13443-2_6.

    Article  CAS  Google Scholar 

  60. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015. https://doi.org/10.1016/j.jcin.2015.06.017.

  61. Mygind ND, Michelsen MM, Pena A, Frestad D, Dose N, Aziz A, et al. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: The iPOWER study. J Am Heart Assoc. 2015;5:e003064. https://doi.org/10.1161/JAHA.115.003064.

    Article  Google Scholar 

  62. Anderson RD, Petersen JW, Mehta PK, Wei J, Johnson BD, Handberg EM, et al. Prevalence of coronary endothelial and microvascular dysfunction in women with symptoms of ischemia and no obstructive coronary artery disease is confirmed by a new cohort: the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation-Coronary Vascular Dysfunc. J Interv Cardiol 2019. 2019. https://doi.org/10.1155/2019/7169275.

  63. Sicari R, Rigo F, Cortigiani L, Gherardi S, Galderisi M, Picano E. Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am J Cardiol. 2009;103:626–31. https://doi.org/10.1016/j.amjcard.2008.10.033.

    Article  PubMed  Google Scholar 

  64. Sade LE, Eroglu S, Bozbaş H, Özbiçer S, Hayran M, Haberal A, et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2009;204:580–5. https://doi.org/10.1016/j.atherosclerosis.2008.09.038.

    Article  CAS  PubMed  Google Scholar 

  65. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858–68. https://doi.org/10.1161/CIRCULATIONAHA.112.120402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Al Suwaidi J, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–54. https://doi.org/10.1161/01.CIR.101.9.948.

    Article  CAS  PubMed  Google Scholar 

  67. Ahmari SAL, Bunch TJ, Modesto K, Stussy V, Dichak A, Seward JB, et al. Impact of individual and cumulative coronary risk factors on coronary flow reserve assessed by dobutamine stress echocardiography. Am J Cardiol. 2008;101:1694–9. https://doi.org/10.1016/j.amjcard.2008.02.055.

    Article  PubMed  Google Scholar 

  68. Tuccillo B, Accadia M, Rumolo S, Iengo R, D’Andrea A, Granata G, et al. Factors predicting coronary flow reserve impairment in patients evaluated for chest pain: an ultrasound study. J Cardiovasc Med. 2008;9:251–5. https://doi.org/10.2459/JCM.0b013e32820588dd.

    Article  Google Scholar 

  69. Lee DH, Youn HJ, Choi YS, Park CS, Park JH, Jeon HK, et al. Coronary flow reserve is a comprehensive indicator of cardiovascular risk factors in subjects with chest pain and normal coronary angiogram. Circ J. 2010;74:1405–14. https://doi.org/10.1253/circj.CJ-09-0897.

    Article  CAS  PubMed  Google Scholar 

  70. Wessel TR, Arant CB, McGorray SP, Sharaf BL, Reis SE, Kerensky RA, et al. Coronary microvascular reactivity is only partially predicted by atherosclerosis risk factors or coronary artery disease in women evaluated for suspected ischemia: results from the NHLBI Women’s Ischemia Syndrome Evaluation (WISE). Clin Cardiol. 2007;30:69–74. https://doi.org/10.1002/clc.19.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tona F, Serra R, Di Ascenzo L, Osto E, Scarda A, Fabris R, et al. Systemic inflammation is related to coronary microvascular dysfunction in obese patients without obstructive coronary disease. Nutr Metab Cardiovasc Dis. 2014;24:447–53. https://doi.org/10.1016/j.numecd.2013.09.021.

    Article  CAS  PubMed  Google Scholar 

  72. Ishimori ML, Martin R, Berman DS, Goykhman P, Shaw LJ, Shufelt C, et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging. 2011;4:27–33. https://doi.org/10.1016/j.jcmg.2010.09.019.

    Article  PubMed  Google Scholar 

  73. Faccini A, Kaski JC, Camici PG. Coronary microvascular dysfunction in chronic inflammatory rheumatoid diseases. Eur Heart J. 2016;37:1799–806. https://doi.org/10.1093/eurheartj/ehw018.

    Article  PubMed  Google Scholar 

  74. Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging. 2013;6:660–7. https://doi.org/10.1016/j.jcmg.2012.12.011.

    Article  PubMed  Google Scholar 

  75. Schroder J, Mygind ND, Frestad D, Michelsen M, Suhrs HE, Bove KB, et al. Pro-inflammatory biomarkers in women with non-obstructive angina pectoris and coronary microvascular dysfunction. IJC Heart Vasc. 2019;24:100370. https://doi.org/10.1016/j.ijcha.2019.100370.

    Article  Google Scholar 

  76. Suhrs HE, Michelsen MM, Prescott E. Treatment strategies in coronary microvascular dysfunction: a systematic review of interventional studies. Microcirculation. 2019;26:e12430. https://doi.org/10.1111/micc.12430.

    Article  PubMed  Google Scholar 

  77. • Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, et al. Stratified medical therapy using invasive coronary function testing in angina: the CorMicA Trial. J Am Coll Cardiol. 2018;72:2841–55. https://doi.org/10.1016/j.jacc.2018.09.006Results from the CorMicA trial showed that a patient-tailored treatment strategy guided by invasive evaluation of epicardial anatomy and microvascular function in patients with angina and no obstructive CAD was associated with reduction in angina severity and better quality of life compared with standard care.

    Article  PubMed  Google Scholar 

  78. Ford TJ, Stanley B, Sidik N, Good R, Rocchiccioli P, McEntegart M, et al. 1-year outcomes of angina management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc Interv. 2020;13:33–45. https://doi.org/10.1016/j.jcin.2019.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bove KB, Nilsson M, Pedersen LR, Mikkelsen N, Suhrs HE, Astrup A, et al. Comprehensive treatment of microvascular angina in overweight women—a randomized controlled pilot trial. PLoS One. 2020;15:e0240722. https://doi.org/10.1371/journal.pone.0240722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Frestad Bechsgaard.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Women and Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechsgaard, D.F., Prescott, E. Coronary Microvascular Dysfunction: A Practical Approach to Diagnosis and Management. Curr Atheroscler Rep 23, 54 (2021). https://doi.org/10.1007/s11883-021-00947-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00947-y

Keywords

Navigation