Skip to main content

Advertisement

Log in

The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities

  • Genetics and Genomics (A. J. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration.

Recent Findings

Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation.

Summary

A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292. doi:10.1161/01.cir.0000441139.02102.80.

    Article  PubMed  Google Scholar 

  2. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207. doi:10.1056/NEJMoa0807646.

    Article  CAS  PubMed  Google Scholar 

  3. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3. doi:10.1126/science.1142842.

    Article  CAS  PubMed  Google Scholar 

  4. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91. doi:10.1126/science.1142447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53. doi:10.1056/NEJMoa072366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  CAS  Google Scholar 

  7. •• Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30. doi:10.1038/ng.3396. This study represents the largest and most up-to-date meta-analysis of GWAS data for coronary artery disease with >180,000 subjects and identified ∼60 risk loci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6. doi:10.1093/nar/gkt1229.

    Article  CAS  PubMed  Google Scholar 

  9. Marigorta UM, Navarro A. High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet. 2013;9(6), e1003566. doi:10.1371/journal.pgen.1003566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlson CS, Matise TC, North KE, Haiman CA, Fesinmeyer MD, Buyske S, et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 2013;11(9), e1001661. doi:10.1371/journal.pbio.1001661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jansen H, Lieb W, Schunkert H. Mendelian randomization for the identification of causal pathways in atherosclerotic vascular disease. Cardiovasc Drugs Ther. 2016;30(1):41–9. doi:10.1007/s10557-016-6640-y.

    Article  PubMed  Google Scholar 

  12. Lieb W, Jansen H, Loley C, Pencina MJ, Nelson CP, Newton-Cheh C, et al. Genetic predisposition to higher blood pressure increases coronary artery disease risk. Hypertension. 2013;61(5):995–1001. doi:10.1161/HYPERTENSIONAHA.111.00275.

    Article  CAS  PubMed  Google Scholar 

  13. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47(11):1282–93. doi:10.1038/ng.3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. doi:10.1016/S0140-6736(12)60312-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J Am Coll Cardiol. 2015;65(15):1552–61. doi:10.1016/j.jacc.2015.02.020.

    Article  CAS  PubMed  Google Scholar 

  16. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52. doi:10.1038/ng.2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nordestgaard BG, Palmer TM, Benn M, Zacho J, Tybjaerg-Hansen A, Davey Smith G, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 2012;9(5), e1001212. doi:10.1371/journal.pmed.1001212.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmad OS, Morris JA, Mujammami M, Forgetta V, Leong A, Li R, et al. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nat Commun. 2015;6:7060. doi:10.1038/ncomms8060.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jansen H, Loley C, Lieb W, Pencina MJ, Nelson CP, Kathiresan S, et al. Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis. 2015;241(2):419–26. doi:10.1016/j.atherosclerosis.2015.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ross S, Gerstein HC, Eikelboom J, Anand SS, Yusuf S, Pare G. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. Eur Heart J. 2015;36(23):1454–62. doi:10.1093/eurheartj/ehv083.

    Article  PubMed  Google Scholar 

  21. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422–7, 7e1-2. doi:10.1038/ng.2528.

  22. Nelson CP, Hamby SE, Saleheen D, Hopewell JC, Zeng L, Assimes TL, et al. Genetically determined height and coronary artery disease. N Engl J Med. 2015;372(17):1608–18. doi:10.1056/NEJMoa1404881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olden M, Teumer A, Bochud M, Pattaro C, Kottgen A, Turner ST, et al. Overlap between common genetic polymorphisms underpinning kidney traits and cardiovascular disease phenotypes: the CKDGen consortium. Am J Kidney Dis. 2013;61(6):889–98. doi:10.1053/j.ajkd.2012.12.024.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sabater-Lleal M, Huang J, Chasman D, Naitza S, Dehghan A, Johnson AD, et al. Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation. 2013;128(12):1310–24. doi:10.1161/CIRCULATIONAHA.113.002251.

    Article  CAS  PubMed  Google Scholar 

  25. van Meurs JB, Pare G, Schwartz SM, Hazra A, Tanaka T, Vermeulen SH, et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr. 2013;98(3):668–76. doi:10.3945/ajcn.112.044545.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palmer TM, Nordestgaard BG, Benn M, Tybjaerg-Hansen A, Davey Smith G, Lawlor DA, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ. 2013;347:f4262. doi:10.1136/bmj.f4262.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, Gorman DN, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379(9822):1205–13.

    Article  PubMed  CAS  Google Scholar 

  28. Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379(9822):1214–24. doi:10.1016/S0140-6736(12)60110-X.

    Article  CAS  Google Scholar 

  29. Dehghan A, Dupuis J, Barbalic M, Bis JC, Eiriksdottir G, Lu C, et al. Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation. 2011;123(7):731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548.

    Article  PubMed  Google Scholar 

  31. Tang WH, Wu Y, Hartiala J, Fan Y, Stewart AF, Roberts R, et al. Clinical and genetic association of serum ceruloplasmin with cardiovascular risk. Arterioscler Thromb Vasc Biol. 2012;32(2):516–22.

    Article  PubMed  CAS  Google Scholar 

  32. Reiner AP, Hartiala J, Zeller T, Bis JC, Dupuis J, Fornage M, et al. Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the CHARGE and CARe consortia. Hum Mol Genet. 2013;22(16):3381–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang WH, Hartiala J, Fan Y, Wu Y, Stewart AF, Erdmann J, et al. Clinical and genetic association of serum paraoxonase and arylesterase activities with cardiovascular risk. Arterioscler Thromb Vasc Biol. 2012;32(11):2803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The Genotype-Tissue Expression Consortium. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. doi:10.1126/science.1262110.

    Article  CAS  Google Scholar 

  35. Franzen O, Ermel R, Cohain A, Akers NK, Di Narzo A, Talukdar HA, et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science. 2016;353(6301):827–30. doi:10.1126/science.aad6970.

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh S, Vivar J, Nelson CP, Willenborg C, Segre AV, Makinen VP, et al. Systems genetics analysis of genome-wide association study reveals novel associations between key biological processes and coronary artery disease. Arterioscler Thromb Vasc Biol. 2015;35(7):1712–22. doi:10.1161/ATVBAHA.115.305513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Braenne I, Civelek M, Vilne B, Di Narzo A, Johnson AD, Zhao Y, et al. Prediction of causal candidate genes in coronary artery disease loci. Arterioscler Thromb Vasc Biol. 2015;35(10):2207–17. doi:10.1161/ATVBAHA.115.306108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sazonova O, Zhao Y, Nurnberg S, Miller C, Pjanic M, Castano VG, et al. Characterization of tcf21 downstream target regions identifies a transcriptional network linking multiple independent coronary artery disease loci. PLoS Genet. 2015;11(5), e1005202. doi:10.1371/journal.pgen.1005202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Erdmann J, Stark K, Esslinger UB, Rumpf PM, Koesling D, de Wit C, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature. 2013;504(7480):432–6. doi:10.1038/nature12722.

    Article  CAS  PubMed  Google Scholar 

  40. Cohen JC, Boerwinkle E, Mosley Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  41. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41. doi:10.1056/NEJMoa1308027.

    Article  PubMed  CAS  Google Scholar 

  42. Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374(12):1123–33. doi:10.1056/NEJMoa1510926.

    Article  CAS  PubMed  Google Scholar 

  43. • Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351(6278):1166–71. doi:10.1126/science.aad3517. Using a variety of approaches, this study identified rare variants of SRB1 that were associated with increased HDL cholesterol levels and increased risk of coronary artery disease.

  44. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31. doi:10.1056/NEJMoa1307095.

    Article  CAS  Google Scholar 

  45. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371(22):2072–82. doi:10.1056/NEJMoa1405386.

    Article  CAS  Google Scholar 

  46. Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Merlini AP, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6. doi:10.1038/nature13917.

    Article  CAS  PubMed  Google Scholar 

  47. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators, Stitziel NO, Stirrups KE, Masca NG, Erdmann J, et al. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374(12):1134–44. doi:10.1056/NEJMoa1507652.

    Article  PubMed Central  CAS  Google Scholar 

  48. Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374(22):2131–41. doi:10.1056/NEJMoa1508419.

    Article  CAS  PubMed  Google Scholar 

  49. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. doi:10.1038/ng1161.

    Article  CAS  PubMed  Google Scholar 

  50. Luke MM, Kane JP, Liu DM, Rowland CM, Shiffman D, Cassano J, et al. A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease. Arterioscler Thromb Vasc Biol. 2007;27(9):2030–6. doi:10.1161/ATVBAHA.107.141291.

    Article  CAS  PubMed  Google Scholar 

  51. Getz GS, Reardon CA. Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arterioscler Thromb Vasc Biol. 2016;36(9):1734–41. doi:10.1161/ATVBAHA.116.306874.

    Article  CAS  PubMed  Google Scholar 

  52. Pasterkamp G, van der Laan SW, Haitjema S, Foroughi Asl H, Siemelink MA, Bezemer T, et al. Human validation of genes associated with a murine atherosclerotic phenotype. Arterioscler Thromb Vasc Biol. 2016;36(6):1240–6. doi:10.1161/ATVBAHA.115.306958.

    Article  CAS  PubMed  Google Scholar 

  53. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bennett BJ, Farber CR, Orozco L, Min Kang H, Ghazalpour A, Siemers N, et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 2010;20(2):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 2011;7(6), e1001393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bennett BJ, Orozco L, Kostem E, Erbilgin A, Dallinga M, Neuhaus I, et al. High-resolution association mapping of atherosclerosis loci in mice. Arterioscler Thromb Vasc Biol. 2012;32(8):1790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Orozco LD, Bennett BJ, Farber CR, Ghazalpour A, Pan C, Che N, et al. Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages. Cell. 2012;151(3):658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis RC, van Nas A, Bennett B, Orozco L, Pan C, Rau CD, et al. Genome-wide association mapping of blood cell traits in mice. Mamm Genome. 2013;24(3–4):105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17(1):141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghazalpour A, Bennett BJ, Shih D, Che N, Orozco L, Pan C, et al. Genetic regulation of mouse liver metabolite levels. Mol Syst Biol. 2014;10(5):730. doi:10.15252/msb.20135004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhou X, Crow AL, Hartiala J, Spindler TJ, Ghazalpour A, Barsky LW, et al. The genetic landscape of hematopoietic stem cell frequency in mice. Stem Cell Rep. 2015;5(1):125–38. doi:10.1016/j.stemcr.2015.05.008.

    Article  CAS  Google Scholar 

  62. Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, et al. Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet. 2015;11(12), e1005711. doi:10.1371/journal.pgen.1005711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. doi:10.1073/pnas.0407076101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6. doi:10.1073/pnas.0601056103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi:10.1038/nature05414.

    Article  PubMed  Google Scholar 

  66. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi:10.1038/nature11450.

    Article  CAS  PubMed  Google Scholar 

  67. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85. doi:10.1038/nature10809.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi:10.1038/nature12198.

    Article  CAS  PubMed  Google Scholar 

  69. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24. doi:10.1161/CIRCRESAHA.115.306807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. doi:10.1038/nm.3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904–10. doi:10.1093/eurheartj/ehu002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647–60. doi:10.1074/jbc.M114.618249.

    Article  CAS  PubMed  Google Scholar 

  76. Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005;106(3):357–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37. doi:10.1194/jlr.M051680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10(3):326–38. doi:10.1016/j.celrep.2014.12.036.

    Article  CAS  Google Scholar 

  79. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. doi:10.1016/j.cell.2016.02.011.

    Article  CAS  PubMed  Google Scholar 

  80. Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF, Roberts R, et al. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol. 2014;34(6):1307–13. doi:10.1161/ATVBAHA.114.303252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18(1):130–43. doi:10.1016/j.cmet.2013.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. doi:10.1016/j.cell.2014.09.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–43. doi:10.1016/j.chom.2016.04.017.

    Article  CAS  PubMed  Google Scholar 

  84. Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M, Hov JR, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–406. doi:10.1038/ng.3695.

    Article  CAS  PubMed  Google Scholar 

  85. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12. doi:10.1038/ng.3663.

    Article  CAS  PubMed  Google Scholar 

  86. Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48(11):1413–7. doi:10.1038/ng.3693.

    Article  CAS  PubMed  Google Scholar 

  87. • Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25(10):1558–69. doi:10.1101/gr.194118.115. Using a panel of inbred mouse strains, this was the first study to demonstrate that host genetic variation was associated with the abudance of bacterial taxa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roberts LD, Gerszten RE. Toward new biomarkers of cardiometabolic diseases. Cell Metab. 2013;18(1):43–50. doi:10.1016/j.cmet.2013.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15(1):34–48. doi:10.1038/nrg3575.

    Article  CAS  PubMed  Google Scholar 

  90. • Hartiala JA, Tang WH, Wang Z, Crow AL, Stewart AF, Roberts R, et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat Commun. 2016;7:10558. doi:10.1038/ncomms10558. This study implicated glycine metabolism as a female-specific mechanism for CAD by integrating targeted metabolomics and unbiased genomics strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 2011;7(8), e1002215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pare G, Chasman DI, Parker AN, Zee RR, Malarstig A, Seedorf U, et al. Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009;2(2):142–50. doi:10.1161/CIRCGENETICS.108.829804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lange LA, Croteau-Chonka DC, Marvelle AF, Qin L, Gaulton KJ, Kuzawa CW, et al. Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults. Hum Mol Genet. 2010;19(10):2050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams SR, Yang Q, Chen F, Liu X, Keene KL, Jacques P, et al. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke. PLoS Genet. 2014;10(3), e1004214. doi:10.1371/journal.pgen.1004214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Choe CU, Atzler D, Wild PS, Carter AM, Boger RH, Ojeda F, et al. Homoarginine levels are regulated by L-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation. 2013;128(13):1451–61. doi:10.1161/CIRCULATIONAHA.112.000580.

    Article  CAS  PubMed  Google Scholar 

  97. Kleber ME, Seppala I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, et al. Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circ Cardiovasc Genet. 2013;6(5):505–13. doi:10.1161/CIRCGENETICS.113.000108.

    Article  CAS  PubMed  Google Scholar 

  98. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83. doi:10.1038/ng.2797.

    Article  CAS  Google Scholar 

  99. Danik JS, Pare G, Chasman DI, Zee RY, Kwiatkowski DJ, Parker A, et al. Novel loci, including those related to Crohn disease, psoriasis, and inflammation, identified in a genome-wide association study of fibrinogen in 17 686 women: the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009;2(2):134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schemmer P, Zhong Z, Galli U, Wheeler MD, Xiangli L, Bradford BU, et al. Glycine reduces platelet aggregation. Amino Acids. 2013;44(3):925–31. doi:10.1007/s00726-012-1422-8.

    Article  CAS  PubMed  Google Scholar 

  101. Hasegawa S, Ichiyama T, Sonaka I, Ohsaki A, Okada S, Wakiguchi H, et al. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol. 2012;167(2):269–74. doi:10.1111/j.1365-2249.2011.04519.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wheeler M, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J. 2000;14(3):476–84.

    CAS  PubMed  Google Scholar 

  103. Bruck R, Wardi J, Aeed H, Avni Y, Shirin H, Avinoach I, et al. Glycine modulates cytokine secretion, inhibits hepatic damage and improves survival in a model of endotoxemia in mice. Liver Int. 2003;23(4):276–82.

    Article  CAS  PubMed  Google Scholar 

  104. Spittler A, Reissner CM, Oehler R, Gornikiewicz A, Gruenberger T, Manhart N, et al. Immunomodulatory effects of glycine on LPS-treated monocytes: reduced TNF-alpha production and accelerated IL-10 expression. FASEB J. 1999;13(3):563–71.

    CAS  PubMed  Google Scholar 

  105. Ding Y, Svingen GF, Pedersen ER, Gregory JF, Ueland PM, Tell GS et al. Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J Am Heart Assoc. 2016;5(1). doi:10.1161/JAHA.115.002621.

  106. Chapman MJ, Stock JK, Ginsberg HN, Forum P. PCSK9 inhibitors and cardiovascular disease: heralding a new therapeutic era. Curr Opin Lipidol. 2015;26(6):511–20. doi:10.1097/MOL.0000000000000239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9. doi:10.1056/NEJMoa1500858.

    Article  CAS  PubMed  Google Scholar 

  108. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99. doi:10.1056/NEJMoa1501031.

    Article  CAS  PubMed  Google Scholar 

  109. Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016. doi:10.1001/jama.2016.16951.

    PubMed  Google Scholar 

  110. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47. doi:10.1056/NEJMoa1400283.

    Article  CAS  PubMed  Google Scholar 

  111. Digenio A, Dunbar RL, Alexander VJ, Hompesch M, Morrow L, Lee RG, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39(8):1408–15. doi:10.2337/dc16-0126.

    Article  PubMed  Google Scholar 

  112. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. doi:10.1056/NEJMoa0706628.

    Article  CAS  PubMed  Google Scholar 

  113. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93. doi:10.1056/NEJMoa1409065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35. doi:10.1056/NEJMoa1001689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li XM, Tang WH, Mosior MK, Huang Y, Wu Y, Matter W, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol. 2013;33(7):1696–705. doi:10.1161/ATVBAHA.113.301373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145–56. doi:10.1161/CIRCRESAHA.115.306656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang J, Xie F, Yun H, Chen L, Muntner P, Levitan EB, et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1813–8. doi:10.1136/annrheumdis-2015-207870.

    Article  CAS  PubMed  Google Scholar 

  118. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7. doi:10.1053/j.gastro.2012.06.031.

    Article  CAS  PubMed  Google Scholar 

  119. Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012;109(52):21307–12. doi:10.1073/pnas.1215689109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sandhu SS, Chase Jr T. Aerobic degradation of choline by Proteus mirabilis: enzymatic requirements and pathway. Can J Microbiol. 1986;32(9):743–50.

    Article  CAS  PubMed  Google Scholar 

  121. • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95. doi:10.1016/j.cell.2015.11.055. This elegant mouse study is one of the first to demonstrate that pharmacological manipulation of gut bacterial enzymatic processes can be used to treat atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brook RD, Rajagopalan S, Pope 3rd CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. doi:10.1161/CIR.0b013e3181dbece1.

    Article  CAS  PubMed  Google Scholar 

  123. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429. doi:10.1038/ncomms12429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratories is supported, in part, by NIH grants R01ES021801, R01ES021801-S3, R01ES025786, P01ES022845, R01MD010358, R01HL133169, and R01HL128572; U.S. EPA Grant RD83544101; a grant from the Whittier Foundation; and a Transatlantic

Networks of Excellence Award from Foundation Leducq. The funders had no role in preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Allayee.

Ethics declarations

Conflict of Interest

Jaana Hartiala, William S. Schwartzman, Julian Gabbay, Anatole Ghazalpour, Brian J. Bennett, and Hooman Allayee declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics and Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartiala, J., Schwartzman, W.S., Gabbay, J. et al. The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Curr Atheroscler Rep 19, 6 (2017). https://doi.org/10.1007/s11883-017-0641-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-017-0641-6

Keywords

Navigation