Skip to main content
Log in

Transcriptomic Signature of Atherosclerosis in the Peripheral Blood: Fact or Fiction?

  • Genetics (A. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The notion that gene expression signatures in blood can serve as biomarkers of disease states is not new. In the case of atherosclerosis, and coronary artery disease in particular, whether changes in gene expression in peripheral blood mononuclear cells reflects disease processes occurring in the vessel wall remains controversial. When comparing 15 studies that identified 706 differentially expressed genes, only 23 genes were replicated in 2 to 3 studies, at most. This low level of replication may reflect sample sizes too small to overcome heterogeneity in the response to disease. Genetic differences affect how each person responds to disease and what genes are altered. Recent studies with larger cohorts (over 5000 individuals) that considered the effect of common genetic variants still could not claim disease signature genes as biomarkers suggesting that even larger case-control studies will be required to achieve the required statistical power. On the other hand, out of 7 studies that identified 58 microRNAs, 12 were concordant in 2 or more studies, suggesting that microRNAs may be less affected by genetic differences and more accurately reflect the disease process. Here, we review the current state of knowledge on expression profiling and its utility for predicting coronary artery disease status and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barquera S, Pedroza-Tobias A, Medina C, Hernandez-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46(5):328–38.

    Article  PubMed  Google Scholar 

  2. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  3. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129(15):1551–9.

    Article  CAS  PubMed  Google Scholar 

  5. Abdullah MH, Othman Z, Noor HM, Arshad SS, Yusof AK, Jamal R, et al. Peripheral blood gene expression profile of atherosclerotic coronary artery disease in patients of different ethnicity in Malaysia. J Cardiol. 2012;60(3):192–203.

    Article  PubMed  Google Scholar 

  6. Ma J, Liew CC. Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease. J Mol Cell Cardiol. 2003;35(8):993–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sivapalaratnam S, Basart H, Watkins NA, Maiwald S, Rendon A, Krishnan U, et al. Monocyte gene expression signature of patients with early onset coronary artery disease. PLoS One. 2012;7(2):e32166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wingrove JA, Daniels SE, Sehnert AJ, Tingley W, Elashoff MR, Rosenberg S, et al. Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circ Cardiovasc Genet. 2008;1(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  9. Liu D, Glaser AP, Patibandla S, Blum A, Munson PJ, McCoy JP, et al. Transcriptional profiling of CD133(+) cells in coronary artery disease and effects of exercise on gene expression. Cytotherapy. 2011;13(2):227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sinnaeve PR, Donahue MP, Grass P, Seo D, Vonderscher J, Chibout SD, et al. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS One. 2009;4(9):e7037.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gong R, Chen MH, Peng LS, Wei SL. Common genes in coronary artery disease from Europe, Asia and North America regardless of race and lifestyle. Eur Rev Med Pharmacol Sci. 2015;19(6):1092–100.

    CAS  PubMed  Google Scholar 

  12. Kazmi N, Gaunt TR. Diagnosis of coronary heart diseases using gene expression profiling; stable coronary artery disease, cardiac ischemia with and without myocardial necrosis. PLoS One. 2016;11(3):e0149475.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Perisic L, Aldi S, Sun Y, Folkersen L, Razuvaev A, Roy J, et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J Intern Med. 2016;279(3):293–308. This study compares diferential expression profiles of atherosclerotic lesions and peripheral blood mononuclear cells sampled from the same symptomatic and asymptomatic individuals and finds little overlap in gene expression.

  14. Joehanes R, Ying S, Huan T, Johnson AD, Raghavachari N, Wang R, et al. Gene expression signatures of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33(6):1418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patino WD, Mian OY, Kang JG, Matoba S, Bartlett LD, Holbrook B, et al. Circulating transcriptome reveals markers of atherosclerosis. Proc Natl Acad Sci U S A. 2005;102(9):3423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nuhrenberg TG, Langwieser N, Binder H, Kurz T, Stratz C, Kienzle RP, et al. Transcriptome analysis in patients with progressive coronary artery disease: identification of differential gene expression in peripheral blood. J Cardiovasc Transl Res. 2013;6(1):81–93.

    Article  PubMed  Google Scholar 

  17. Taurino C, Miller WH, McBride MW, McClure JD, Khanin R, Moreno MU, et al. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci (Lond). 2010;119(8):335–43.

    Article  CAS  Google Scholar 

  18. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  19. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  22. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1995;92(9):3893–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT) and standard density gradient. BMC Immunol. 2015;16:48.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Elashoff MR, Nuttall R, Beineke P, Doctolero MH, Dickson M, Johnson AM, et al. Identification of factors contributing to variability in a blood-based gene expression test. PLoS One. 2012;7(7):e40068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elashoff MR, Wingrove JA, Beineke P, Daniels SE, Tingley WG, Rosenberg S, et al. Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients. BMC Med Genomics. 2011;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rosenberg S, Elashoff MR, Beineke P, Daniels SE, Wingrove JA, Tingley WG, et al. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann Intern Med. 2010;153(7):425–34.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Voros S, Elashoff MR, Wingrove JA, Budoff MJ, Thomas GS, Rosenberg S. A peripheral blood gene expression score is associated with atherosclerotic Plaque Burden and Stenosis by cardiovascular CT-angiography: results from the PREDICT and COMPASS studies. Atherosclerosis. 2014;233(1):284–90.

    Article  CAS  PubMed  Google Scholar 

  28. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118(4):703–20.

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5.

    Article  PubMed  Google Scholar 

  31. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  32. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84.

    Article  CAS  PubMed  Google Scholar 

  33. • Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Munzel T, et al. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J. 2016. doi:10.1093/eurheartj/ehw250. This study is of major importance because it provides compelling evidence for the utility of microRNAs at predicting cardiovascular mortality.

  34. Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One. 2013;8(12):e80738.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stather PW, Sylvius N, Wild JB, Choke E, Sayers RD, Bown MJ. Differential microRNA expression profiles in peripheral arterial disease. Circ Cardiovasc Genet. 2013;6(5):490–7.

    Article  CAS  PubMed  Google Scholar 

  36. •• Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One. 2015;10(12):e0145930. This article is of major importance because it is the first to demonstrate the utility of micro-RNA profiles to predict cardiovascular events.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394(3):792–7.

    Article  CAS  PubMed  Google Scholar 

  38. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Winsvold BS, Nelson CP, Malik R, Gormley P, Anttila V, Vander Heiden J, et al. Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurol Genet. 2015;1(1):e10. This study reveals a complex genetic relationship between migraine and coronary artery disease risk loci, providing evidence of pleiotropy.

  40. •• Yao C, Chen BH, Joehanes R, Otlu B, Zhang X, Liu C, et al. Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes. Circulation. 2015;131(6):536–49. This article is of major importance because it demonstrates the robust interaction of genetic variants with personnal transcriptomic profiles in blood.

    Article  CAS  PubMed  Google Scholar 

  41. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One. 2010;5(5):e10693.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. R. Stewart.

Ethics declarations

Conflict of Interest

Hsiao-Huei Chen and Alexandre F. R. Stewart declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HH., Stewart, A.F.R. Transcriptomic Signature of Atherosclerosis in the Peripheral Blood: Fact or Fiction?. Curr Atheroscler Rep 18, 77 (2016). https://doi.org/10.1007/s11883-016-0634-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0634-x

Keywords

Navigation