Skip to main content
Log in

Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Molecular mechanism underlying the patho-physiology of coronary artery disease (CAD) is complex. We used global expression profiling combined with analysis of biological network to dissect out potential genes and pathways associated with CAD in a representative case–control Asian Indian cohort. We initially performed blood transcriptomics profiling in 20 subjects, including 10 CAD patients and 10 healthy controls on the Agilent microarray platform. Data was analysed with Gene Spring Gx12.5, followed by network analysis using David v 6.7 and Reactome databases. The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change >2, P <0.05) between the cases and the controls of which 142 genes were upregulated and 48 genes were downregulated. Genes associated with inflammation, immune response, cell regulation, proliferation and apoptotic pathways were enriched, while inflammatory and immune response genes were displayed as hubs in the network, having greater number of interactions with the neighbouring genes. Expression of EGR1/2/3, IL8, CXCL1, PTGS2, CD69, IFNG, FASLG, CCL4, CDC42, DDX58, NFKBID and NR4A2 genes were independently validated; EGR1/2/3 and IL8 showed >8-fold higher expression in cases relative to the controls implying their important role in CAD. In conclusion, global gene expression profiling combined with network analysis can help in identifying key genes and pathways for CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Apostolakis S., Vogiatzi K., Amanatidou V. and Spandidos D. A. 2009 Interleukin 8 and cardiovascular disease. Cardiovasc. Res. 84, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Baggiolini M. and Clark-Lewis I. 1992 Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 307, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Begom R. and Singh R. B. 1995 Prevalence of coronary artery disease and its risk factors in the urban population of South and North India. Acta Cardiol. 50, 227–240.

    CAS  PubMed  Google Scholar 

  • Brand E., Herrmann S. M., Nicaud V., Evans A., Ruidavets J. B., Arveiler D. et al. 2000 Identification of two polymorphisms in the early growth response protein-1 gene: possible association with lipid variables. J. Mol. Med. 78, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Breland U. M., Halvorsen B., Hol J., Oie E., Paulsson-Berne G., Yndestad A. et al. 2008 A potential role of the CXC chemokine GROalpha in atherosclerosis and plaque destabilization: downregulatory effects of statins. Arterioscler. Thromb. Vasc. Biol. 28, 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Cipollone F. and Fazia M. L. 2006 COX-2 and atherosclerosis. J. Cardiovasc. Pharmacol. 47 suppl 1, S26–S36.

    Article  CAS  PubMed  Google Scholar 

  • Consortium I. G. V. 2005 The Indian genome variation database (IGVdb): a project overview. Hum. Genet. 118, 1–11.

    Article  Google Scholar 

  • Dahl T. B., Yndestad A., Skjelland M., Oie E., Dahl A., Michelsen A. et al. 2007 Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 115, 972–980.

    Article  CAS  PubMed  Google Scholar 

  • Devaux Y., Bousquenaud M., Rodius S., Marie P. Y., Maskali F., Zhang L. et al. 2011 Transforming growth factor beta receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction. BMC Med. Genomics 4, 83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi A., Slater S. C. and George S. J. 2009 MMP-9 and -12 cause N-cadherin shedding and thereby beta-catenin signalling and vascular smooth muscle cell proliferation. Cardiovasc. Res. 81, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Edgar R., Domrachev M. and Lash A. E. 2002 Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang F., Ooka K., Bhattacharyya S., Wei J., Wu M., Du P. et al. 2011 The early growth response gene Egr2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-beta that is up-regulated in systemic sclerosis and mediates profibrotic responses. Am. J. Pathol. 178, 2077–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedewald W. T., Levy R. I. and Fredrickson D. S. 1972 Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502.

    CAS  PubMed  Google Scholar 

  • Gu R., Zheng D., Bai J., Xie J., Dai Q. and Xu B. 2012 Altered melusin pathways involved in cardiac remodeling following acute myocardial infarction. Cardiovasc. Pathol. 21, 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Han S. B., Moratz C., Huang N. N., Kelsall B., Cho H., Shi C. S. et al. 2005 Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 22, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Holdt L. M., Beutner F., Scholz M., Gielen S., Gabel G., Bergert H. et al. 2010 ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb. Vasc. Biol. 30, 620–627.

    Article  CAS  PubMed  Google Scholar 

  • Huang da W., Sherman B. T. and Lempicki R. A. 2009a Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13.

  • Huang da W., Sherman B. T. and Lempicki R. A. 2009b Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

  • Kapoor D., Trikha D., Vijayvergiya R., Kaul D. and Dhawan V. 2014 Conventional therapies fail to target inflammation and immune imbalance in subjects with stable coronary artery disease: a system-based approach. Atherosclerosis 237, 623– 631.

    Article  CAS  PubMed  Google Scholar 

  • Kim J., Ghasemzadeh N., Eapen D. J., Chung N. C., Storey J. D., Quyyumi A. A. et al. 2014 Gene expression profiles associated with acute myocardial infarction and risk of cardiovascular death. Genome Med. 6, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koerselman J., Van der Graaf Y., de Jaegere P. P. and Grobbee D. E. 2003 Coronary collaterals: an important and underexposed aspect of coronary artery disease. Circulation 107, 2507–2511.

    Article  PubMed  Google Scholar 

  • Kumar N. K. 2006 Bioethics activities in India. East. Mediterr. Health J. 12 suppl 1, S56–S65.

    PubMed  Google Scholar 

  • Lee M. L. and Whitmore G. A. 2002 Power and sample size for DNA microarray studies. Stat. Med. 21, 3543–3570.

    Article  PubMed  Google Scholar 

  • Leonard D. A., Merhige M. E., Williams B. A. and Greene R. S. 2011 Elevated expression of the interleukin-8 receptors CXCR1 and CXCR2 in peripheral blood cells in obstructive coronary artery disease. Coron. Artery Dis. 22, 491–496.

    PubMed  Google Scholar 

  • Li A., Dubey S., Varney M. L., Dave B. J. and Singh R. K. 2003 IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 170, 3369–3376.

    Article  CAS  PubMed  Google Scholar 

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lyn D., Liu X., Bennett N. A. and Emmett N. L. 2000 Gene expression profile in mouse myocardium after ischemia. Physiol. Genomics 2, 93–100.

    CAS  PubMed  Google Scholar 

  • Ma J. and Liew C. C. 2003 Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease. J. Mol. Cell. Cardiol. 35, 993–998.

    Article  CAS  PubMed  Google Scholar 

  • Maitra A., Shanker J., Dash D., John S., Sannappa P. R., Rao V. S. et al. 2008 Polymorphisms in the IL6 gene in Asian Indian families with premature coronary artery disease–the Indian Atherosclerosis Research Study. Thromb. Haemost. 99, 944– 950.

    CAS  PubMed  Google Scholar 

  • Matthews L., Gopinath G., Gillespie M., Caudy M., Croft D., De Bono B. et al. 2009 Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37, D619–D622.

    Article  CAS  PubMed  Google Scholar 

  • McLaren J. E. and Ramji D. P. 2009 Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev. 20, 125–135.

    Article  CAS  PubMed  Google Scholar 

  • Min I. M., Pietramaggiori G., Kim F. S., Passegue E., Stevenson K. E. and Wagers A. J. 2008 The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2, 380–391.

    Article  CAS  PubMed  Google Scholar 

  • Mira E. and Manes S. 2009 Immunomodulatory and anti-inflammatory activities of statins. Endocr. Metab. Immune Disord. Drug Targets 9, 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Morikawa S., Takabe W., Mataki C., Kanke T., Itoh T., Wada Y. et al. 2002 The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. Human umbilical vein endothelial cells. J. Atheroscler. Thromb. 9, 178–183.

    Article  CAS  PubMed  Google Scholar 

  • Shanker J., Maitra A., Rao V. S., Mundkur L., Dhanalakshmi B., Hebbagodi S. et al. 2010 Rationale, design & preliminary findings of the Indian Atherosclerosis Research Study. Indian Heart J. 62, 286–295.

    PubMed  Google Scholar 

  • Sinnaeve P. R., Donahue M. P., Grass P., Seo D., Vonderscher J., Chibout S. D. et al. 2009 Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS One 4, e7037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivapalaratnam S., Basart H., Watkins N. A., Maiwald S., Rendon A., Krishnan U. et al. 2012 Monocyte gene expression signature of patients with early onset coronary artery disease. PLoS One 7, e32166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smih F., Desmoulin F., Berry M., Turkieh A., Harmancey R., Iacovoni J. et al. 2011 Blood signature of pre-heart failure: a microarrays study. PLoS One 6, e20414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillin T., Dhutia H., Chambers J., Malik I., Coady E., Mayet J. et al. 2008 South Asian men have different patterns of coronary artery disease when compared with European men. Int. J. Cardiol. 129, 406–413.

    Article  PubMed  Google Scholar 

  • Vinukonda G., Shaik Mohammad N., Md Nurul Jain J., Prasad Chintakindi K. and Rama Devi Akella R. 2009 Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians. Clin. Chim. Acta 405, 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Weitzman J. B., Fiette L., Matsuo K. and Yaniv M. 2000 JunD protects cells from p53-dependent senescence and apoptosis. Mol. Cell. 6, 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  • Yang J., Sato K., Aprahamian T., Brown N. J., Hutcheson J., Bialik A. et al. 2004 Endothelial overexpression of Fas ligand decreases atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24, 1466–1473.

    Article  CAS  PubMed  Google Scholar 

  • Yin H. M. X., Jiang Y, Shi D and Chen K. 2009 Investigation of gene expression profiles in coronary heart disease and functional analysis of target gene. Chin. Sci. Bull. 54, 759–765.

    CAS  Google Scholar 

  • Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F. et al. 2004 Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364, 937–952.

    Article  PubMed  Google Scholar 

  • Zhou X., Robertson A. K., Rudling M., Parini P. and Hansson G. K. 2005 Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ. Res. 96, 427–434.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thrombosis Research Institute, London; the Department of Biotechnology, Ministry of Science and Technology, Government of India (grant number BT/01/CDE/08/07); the Tata Social Welfare Trust, India (grant number TSWT/IG/SNB/ JP/Sdm); Weston foundation, UK and Foundation Bey, Switzerland. We thank all the clinical investigators, staff, administrative teams and participants of the IARS from Narayana Hrudayalaya, Bengaluru and Asian Heart Centre, Mumbai for their valuable contributions. Vinoth Kumar G., BE Computer Science (Thrombosis Research Institute, India) provided assistance in preparing the tables and figures. S. A. Deepak Ph.D. and Nilanjan Guha Ph.D. (Ms.Agilent Technologies) provided support in the experimental set up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHANKER JAYASHREE.

Additional information

[Arvind P., Jayashree S., Jambunathan S., Nair J. and Kakkar V. V. 2015 Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. J. Genet. 94, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 515 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ARVIND, P., JAYASHREE, S., JAMBUNATHAN, S. et al. Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. J Genet 94, 601–610 (2015). https://doi.org/10.1007/s12041-015-0548-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0548-3

Keywords

Navigation