Skip to main content

Advertisement

Log in

Homocysteine: Role and implications in atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia promotes atherosclerosis and is most commonly caused by B-vitamin deficiencies, especially folic acid, B6, and B12; genetic disorders; certain drugs; and renal impairment. Elevated homocysteine promotes atherosclerosis through increased oxidant stress, impaired endothelial function, and induction of thrombosis. Prospective studies have shown that elevated plasma homocysteine concentrations increase risk of cardiovascular disease by twofold and risk of cerebrovascular disease to a lesser degree. Hyperhomocysteinemia should be identified in patients with progressive or unexplained atherosclerosis and treated appropriately. Treatment of hyperhomocysteinemia is primarily through vitamin supplementation; folic acid and vitamins B6 and B12 are the mainstay of therapy. Betaine and 5-methyl tetrahydrofolate are also effective in lowering homocysteine levels. Treatment of moderately elevated plasma homocysteine in patients without atherosclerosis should be deferred until the completion of randomized outcome trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. McCully KS: Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969, 56:111–128.

    PubMed  CAS  Google Scholar 

  2. Stampfer MJ, Malinow MR, Willett MC, et al.: A prospective study of plasma homocysteine and risk of myocardial infarction in US physicians. JAMA 1992, 268:877–881.

    Article  PubMed  CAS  Google Scholar 

  3. Kang SS, Passen EL, Ruggie N, et al.: Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease. Circulation 1993, 88:1463–1469.

    PubMed  CAS  Google Scholar 

  4. Jacques PF, Rosenberg IH, Rogers G, et al.: Serum total homocysteine concentrations in adolescent and adult Americans: Results from the third national health and nutrition examination survey. Am J Clin Nutr 1999, 69:482–489.

    PubMed  CAS  Google Scholar 

  5. Selhub J, Jacques PF, Wilson PW, et al.: Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993, 270:2693–2698.

    Article  PubMed  CAS  Google Scholar 

  6. Nygard O, Refsum H, Ueland PM, Vollset SE: Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland homocysteine study. Am J Clin Nutr 1998, 67:263–270.

    PubMed  CAS  Google Scholar 

  7. Guttormsen AB, Schneede J, Fiskerstrand T, et al.: Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects. J Nutr 1994, 124:1934–1941.

    PubMed  CAS  Google Scholar 

  8. Graeber JE, Slott JH, Ulane RE, et al.: Effect of homocysteine and homocystine on platelet and vascular arachidonic acid metabolism. Pediatr Res 1982, 16:490–493.

    Article  PubMed  CAS  Google Scholar 

  9. Fryer RH, Wilson BD, Gubler DB, et al.: Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells. Arterioscler Thromb 1993, 13:1327–1333.

    PubMed  CAS  Google Scholar 

  10. Lentz SR, Sadler JE: Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 1991, 88:1906–1914.

    Article  PubMed  CAS  Google Scholar 

  11. Hajjar KA, Mauri L, Jacovina AT, et al.: Tissue plasminogen activator binding to the annexin II tail domain. Direct modulation by homocysteine. J Biol Chem 1998, 273:9987–9993.

    Article  PubMed  CAS  Google Scholar 

  12. Dudman NP, Temple SE, Guo XW, et al.: Homocysteine enhances neutrophil-endothelial interactions in both cultured human cells and rats in vivo. Circ Res 1999, 84:409–416.

    PubMed  CAS  Google Scholar 

  13. Stamler JS, Osborne JA, Jaraki O, et al.: Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993, 91:308–318.

    PubMed  CAS  Google Scholar 

  14. Rolland PH, Friggi A, Barlatier A, et al.: Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation 1995, 91:1161–1174.

    PubMed  CAS  Google Scholar 

  15. Lentz SR, Sobey CG, Piegors DJ, et al.: Vascular dysfunction in monkeys with diet-induced hyperhomocysteinemia. J Clin Invest 1996, 98:24–29.

    PubMed  CAS  Google Scholar 

  16. Hofmann MA, Lalla E, Lu Y, et al.: Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001, 107:675–683.

    PubMed  CAS  Google Scholar 

  17. Kanani PM, Sinkey CA, Browning RL, et al.: Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocysteinemia in humans. Circulation 1999, 100:1161–1168.

    PubMed  CAS  Google Scholar 

  18. Starkebaum G, Harlan JM: Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 1993, 77:1370–1376.

    Google Scholar 

  19. Heinecke JW, Rosen H, Suzuki LA, Chait A: The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem 1987, 262:10098–10103.

    PubMed  CAS  Google Scholar 

  20. Megnien JL, Gariepy J, Saudubray JM, et al.: Evidence of carotid artery wall hypertrophy in homozygous homocystinuria. Circulation 1998, 98:2276–2281.

    PubMed  CAS  Google Scholar 

  21. Southern FN, Cruz N, Fink LM, et al.: Hyperhomocysteinemia increases intimal hyperplasia in a rat carotid endarterectomy model. J Vasc Surg 1998, 28:909–918.

    Article  PubMed  CAS  Google Scholar 

  22. Sutton-Tyrrell K, Bostom A, Selhub J, Zeigler-Johnson C: High homocysteine levels are independently related to isolated systolic hypertension in older adults. Circulation 1997, 96:1745–1749.

    PubMed  CAS  Google Scholar 

  23. Boushey CJ, Beresford SA, Omenn GS, Molutsky AG: A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. JAMA 1995, 274:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  24. Graham IM, Daly LE, Refsum HM, et al.: Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997, 277:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  25. Stampfer MJ, Malinow MR, Willett WC, et al.: A prospective study of plasma homocysteine and risk of myocardial infarction in US physicians. JAMA 1992, 268:877–881.

    Article  PubMed  CAS  Google Scholar 

  26. Nygard O, Nordrehaug JE, Refsum H, et al.: Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997, 337:230–236.

    Article  PubMed  CAS  Google Scholar 

  27. Zylberstein DE, Bengtsson C, Bjorkelund C, et al.: Serum homocysteine in relation to mortality and morbidity from coronary heart disease: a 24-year follow-up of the population study of women in Gothenburg. Circulation 2004, 109:601–606.

    Article  PubMed  CAS  Google Scholar 

  28. Vasan RS, Beiser A, D’Agostino RB, et al.: Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. JAMA 2003, 289:1251–1257.

    Article  PubMed  CAS  Google Scholar 

  29. Evans RW, Shaten BJ, Hempel JD, et al.: Homocysteine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscler Thromb Vasc Biol 1997, 17:1947–1953.

    PubMed  CAS  Google Scholar 

  30. Albert CM, Ma J, Rifai N, et al.: Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002, 105:2595–2599.

    Article  PubMed  CAS  Google Scholar 

  31. Brilakis ES, McConnell JP, Ballman KV, et al.: Lack of association between plasma homocysteine and angiographic coronary artery disease in the era of fortification of cereal grain flour with folic acid. Atherosclerosis 2002, 165:375–381.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor LM Jr, Moneta GL, Sexton GJ, et al.: Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease. J Vasc Surg 1999, 29:8–19.

    Article  PubMed  Google Scholar 

  33. Homocysteine Studies Collaboration: Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002, 288:2015–2022.

    Article  Google Scholar 

  34. Giles WH, Croft JB, Greenlund KJ, et al.: Total homocysteine concentration and the likelihood of nonfatal stroke-results from the third National Health and Nutrition Examination Survey, 1988–1994. Stroke 1998, 29:2473–2477.

    PubMed  CAS  Google Scholar 

  35. McQuillan BM, Beilby JP, Nidorf M, et al.: Hyperhomocysteinemia but not the C677T mutation of methylenetetrahydrofolate reductase is an independent risk determinant of carotid wall thickening—The Perth carotid ultrasound disease assessment study (CUDAS). Circulation 1999, 99:2383–2388.

    PubMed  CAS  Google Scholar 

  36. Peterson JC, Spence JD: Vitamins and progression of atherosclerosis in hyperhomocysteinemia. Lancet 1998, 351:263.

    Article  PubMed  CAS  Google Scholar 

  37. Wald DS, Law M, Morris JK: Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002, 325:1202.

    Article  PubMed  Google Scholar 

  38. Vermeulen EG, Stehouwer CD, Twisk JW: Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet 2000, 12:517–522.

    Article  Google Scholar 

  39. Homocysteine Lowering Trialists’ Collaboration: Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomized trials. BMJ 1998, 316:894–898.

    Google Scholar 

  40. Bostom AG, Gohh RY, Beaulieu AJ, et al.: Treatment of hyperhomocysteinemia in renal transplant recipients. A randomized, placebo-controlled trial. Ann Intern Med 1997, 127:1089–1092.

    PubMed  CAS  Google Scholar 

  41. Jacques PF, Selhub J, Bostom AG, et al.: The effect of folic acid fortification on plasma folate and homocysteine concentrations. N Engl J Med 1999, 340:1449–1454.

    Article  PubMed  CAS  Google Scholar 

  42. Neal B, MacMahon S, Ohkubo T, et al., for the PACIFIC Study Group: Dose-dependent effects of folic acid on plasma homocysteine in a randomized trial conducted among 723 individuals with coronary heart disease. Eur Heart J 2002, 23:1509–1515.

    Article  PubMed  CAS  Google Scholar 

  43. Wald DS, Bishop L, Wald NJ, et al.: Randomized trial of folic acid supplementation and serum homocysteine levels. Arch Intern Med 2001, 161:695–700.

    Article  PubMed  CAS  Google Scholar 

  44. Folsom AR, Nieto FJ, McGovern PG, et al.: Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 1998, 98:204–210.

    PubMed  CAS  Google Scholar 

  45. van der Gaag MS, Ubbink JB, Sillanaukee P, et al.: Effect of consumption of red wine, spirits, and beer on serum homocysteine. Lancet 2000, 355:1522.

    Article  PubMed  Google Scholar 

  46. Steenge GR, Verhoef P, Katan MB: Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 2003, 133:1291–1295.

    PubMed  CAS  Google Scholar 

  47. Litynski P, Loehrer F, Linder L, et al.: Effect of low doses of 5-methyltetrahydrofolate and folic acid on plasma homocysteine in healthy subjects with or without the 677C→T polymorphism of methylenetetrahydrofolate reductase. Eur J Clin Inv 2002, 32:662–668.

    Article  CAS  Google Scholar 

  48. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy with folic acid, vitamin B(12), and vitamin B(6) on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 2002, 288:973–979.

    Article  PubMed  CAS  Google Scholar 

  49. Schnyder G, Roffi M, Pin R, et al.: Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Eng J Med 2001, 345:1593–1600.

    Article  CAS  Google Scholar 

  50. Toole JF, Malinow MR, Stampfer M, et al.: Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004, 291:565–575.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasidhar Guthikonda MD, MPH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthikonda, S., Haynes, W.G. Homocysteine: Role and implications in atherosclerosis. Curr Atheroscler Rep 8, 100–106 (2006). https://doi.org/10.1007/s11883-006-0046-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-006-0046-4

Keywords

Navigation