Skip to main content
Log in

Dietary fats and oils: Technologies for improving cardiovascular health

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The role of dietary lipids in the etiology of coronary heart disease (CHD) continues to evolve as we gain a better understanding of the metabolic effects of individual fatty acids and their impact on surrogate markers of risk. A recent meta-analysis of 60 human studies suggests that for each 1% energy replacement of carbohydrates in the diet with saturated fat or trans fat, serum low-density lipoprotein cholesterol concentrations increase by 0.032 (1.23 mg/dL) and 0.04 mmol/L (1.54 mg/dL), respectively. Current dietary recommendations to keep saturated fat and trans fat intake as low as possible, and to increase the intake of cis mono-unsaturated and polyunsaturated fatty acids, as well as growing recognition of these recommendations by consumers and food regulatory agencies in the United States, have been major driving forces for the edible oil industry and food manufacturers to develop alternative fats and oils with nutritionally improved fatty acid compositions. As solutions for use of trans fatty acids are being sought, oilseeds with modified fatty acid compositions are being viewed as a means to provide such solutions. Additionally, oilseeds with modified fatty acid composition, such as enhanced content of long-chain omega-3 fatty acids or conjugated linoleic acid, have been developed as a way to increase delivery of these fatty acids directly into the food supply or indirectly as use for feed ingredients for livestock. New processing technologies are being utilized around the world to create dietary fats and oils with specific physiologic functions relevant to risk factors for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ridker PM, Brown NJ, Vaughn DE, et al.: Established and emerging plasma biomarkers in the prediction of first atherothrombotic events. Circulation 2004, 109 (Suppl IV):6–19.

    Google Scholar 

  2. Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. In Institute of Medicine of the National Academies. Washington, DC: The National Academies Press; 2002.

  3. Dreon DM, Fernstrom HA, Miller B, Krauss RM: Low-density lipoprotein subclass patterns and lipoprotein response to a reduced-fat diet in men. FASEB J 1994, 8:121–126.

    PubMed  CAS  Google Scholar 

  4. Krauss RM, Dreon DM: Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men. Am J Clin Nutr 1995, 62:478S-487S.

    PubMed  CAS  Google Scholar 

  5. Dreon DM, Fernstrom HA, Miller B, Krauss RM: Apolipoprotein E isoform phenotype and LDL subclass response to a reduced fat diet. Thromb Vasc Biol 1995, 15:105–111.

    CAS  Google Scholar 

  6. Blake GJ, Otvos JD, Difai N, Ridker PM: Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation 2002, 106:1930–1937.

    Article  PubMed  CAS  Google Scholar 

  7. Kuller L, Arnold A, Tracy R, et al.: Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the Cardiovascular Health study. Arterioscler Thromb Vasc Biol 2002, 22:1175–1180.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenson RS, Otvos JD, Freedman DS: Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. Am J Cardiol 2002, 90:89–94.

    Article  PubMed  CAS  Google Scholar 

  9. Mensink RP, Zock PL, Kester A, Katan MB: Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003, 77:1146–1455.

    PubMed  CAS  Google Scholar 

  10. Hu FB, Stampfer MJ, Manson J, et al.: Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 1997, 337:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  11. Sacks FM: Dietary fats and coronary heart disease. Overview. J Cardiovasc Risk 1994, 1:3–8.

    Article  PubMed  CAS  Google Scholar 

  12. Sundram K, Hayes KC, Sru OH: A balance between dietary 18:2 and 16:0 may be required to improve the serum LDL/HDL cholesterol ration in normocholesterolemic men. J Nutr Biochem 1995, 6:179–187.

    Article  CAS  Google Scholar 

  13. Clandinin MT, Cook SL, Konard SD, French MA: The effect of palmitic acid on lipoprotein cholesterol levels. Int J Food Sci Nutr 2000, 51:S61-S71.

    Article  PubMed  CAS  Google Scholar 

  14. Yu S, Derr J, Etherton TD, Kris-Etherton PM: Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr 1995, 61:1129–1139.

    PubMed  CAS  Google Scholar 

  15. Renaud S, Morazain R, Godsey F, et al.: Nutrients, platelet function and composition in nine groups of French and British farmers. Atherosclerosis 1986, 60:37–48.

    Article  PubMed  CAS  Google Scholar 

  16. Hoak J: Fatty acids in animals: thrombosis and hemostasis. Am J Clin Nutr 1997, 65(Suppl):1683S-1686S.

    PubMed  CAS  Google Scholar 

  17. Dietary fatty acids, hemostasis, and cardiovascular disease risk.J Am Diet Assoc 2004, 104:410–419.

  18. Turpeinen AM, Pajari AM, Freese R, et al.: Replacement of dietary saturated by unsaturated fatty acids: effects of platelet protein kinase C activity, urinary content of 2,3-dinor-TXB2 and in vitro platelet aggregation in healthy man. Thromb Haemost 1998, 80:649–655.

    PubMed  CAS  Google Scholar 

  19. Turpeinen AM, Wubert J, Aro A, et al.: Similar effects of diets rich in stearic acid or trans-fatty acids on platelet function and endothelial prostacyclin production in humans. Arterioscler Thromb Vasc Biol 1998, 18:316–322.

    PubMed  CAS  Google Scholar 

  20. Kelly FD, Sinclair AJ, Mann NJ, et al.: A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males. Eur J Clin Nutr 2001, 55:88–96.

    Article  PubMed  CAS  Google Scholar 

  21. Kelly FD, Sinclair AJ, Mann NJ, et al.: Short-term diets enriched in stearic acid or palmitic acids do not alter plasma lipids, platelet aggregation or platelet activation status. Eur J Clin Nutr 2002, 56:490–499.

    Article  PubMed  CAS  Google Scholar 

  22. Tholstrup T, Marckmann P, Jesperson J, Sandstrom B: Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids. Am J Clin Nutr 1994, 59:371–377.

    PubMed  CAS  Google Scholar 

  23. Hunter KA, Crosbie LC, Weir A, et al.: A residential study comparing the effects of diets rich in stearic acid, oleic acid, and linoleic acid on fasting lipids, hemostatic variables and platelets in young healthy men. J Nutr Biochem 2000, 11:408–416.

    Article  PubMed  CAS  Google Scholar 

  24. Baer DJ, Judd JT, Clevidence BA, Tracy RP: Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr 2004, 79:969–973.

    PubMed  CAS  Google Scholar 

  25. Tholstrup T, Marckmann P, Hermansen J, et al.: Effect of modified dairy fat on fasting and postprandial haemostatic variables in healthy young men. Br J Nutr 1999, 82:105–113.

    PubMed  CAS  Google Scholar 

  26. Marckmann P, Sandstrom B, Jespersen J: Low-fat, high-fiber diet favorably affects several independent risk markers of ischemic heart disease: Observations on blood lipids, coagulation, and fibrinolysis from a trial of middle-aged Danes. Am J Clin Nutr 1994, 59:935–939.

    PubMed  CAS  Google Scholar 

  27. Marckmann P, Sandstrom B, Jespersen J: Favorable long-term effect of a low-fat/high-fiber diet on human blood coagulation and fibrinolysis. Arterioscler Thromb 1993, 13:505–511.

    PubMed  CAS  Google Scholar 

  28. Marckmann P, Sandstrom B, Jespersen J: Fasting blood coagulation and fibrinolysis of young adults unchanged by reduction in dietary fat content. Arterioscler Thromb 1992, 12:201–205.

    PubMed  CAS  Google Scholar 

  29. Niskanen L, Schwab US, Sarkkinen ES, et al.: Effects of dietary fat modification on fibrinogen, factor VII, and plasminogen activator inhibitor-1 activity in subjects with impaired glucose tolerance. Metabolism 1997, 46:666–672.

    Article  PubMed  CAS  Google Scholar 

  30. Erickson DR, Erickson MD: Hydrogenation and base stock formulation procedures. In Practical Handbook of Soybean Processing and Utilization. Edited by Erickson DR. Champaign, IL: AOCS Press; 1995:218–238.

    Google Scholar 

  31. Allison DB, Egan SK, Barraj LM, et al.: Estimated intakes of trans fatty and other fatty acids in the US population. J Am Diet Assoc 1999, 99:166–174.

    Article  PubMed  CAS  Google Scholar 

  32. Food, Fats and Oils, edn 7. Washington, DC: Institute of Shortening and Edible Oils; 1994:25.

  33. Oil Crops Situation and Outlook Yearbook. In Market and Trade Economics Division, Economic Research Service, US Department of Agriculture, October 2003, OCS-2003.

  34. Erickson MD: Interesterification. In Practical Handbook of Soybean Processing and Utilization. Edited by Erickson DR. Champaign, IL: AOCS Press; 1995:218–238.

    Google Scholar 

  35. List GR, Emken EA, Kwolek WF, et al.: “Zero trans” margarines: preparation, structure, and properties of interesterified soybean oil—soy trisaturate blends. J Am Oil Chem Soc 1977, 54:408–413.

    CAS  Google Scholar 

  36. List GR, Pelloso T, Orthoefer F, et al.: Preparation and properties of zero trans soybean oil margarines. J Am Oil Chem Soc 1995, 72:383–384.

    Article  CAS  Google Scholar 

  37. List GR, Mounts TL, Orthoefer F, Neff WE: Margarine and shortening oils by interesterification of liquid and trisaturated triglycerides. J Am Oil Chem Soc 1995, 72:379–382.

    Article  CAS  Google Scholar 

  38. Food labeling: trans fatty acids in nutrition labeling.Food and Drug Administration. 2003, Fed Reg 68:41433–41506.

  39. List GR, Steidley KR, Neff WE: Commercial spreads formulation, structure and properties. Inform 2000, 11:980–986.

    Google Scholar 

  40. Ratnayake WM, Pelletier G, Hollywood R, et al.: Trans fatty acids in Canadian margarines: recent trends. J Am Oil Chem Soc 1998, 75:1587–1594.

    CAS  Google Scholar 

  41. Petrauskaite VW, DeGreyt A, Kellens M, Huyghaebaert A: Physical and chemical properties of trans free fats produced by chemical interesterification of vegetable oil blends. J Am Oil Chem Soc 1998, 75:489–493.

    CAS  Google Scholar 

  42. Ozay G, Yildiz M, Mahidin M, et al.: Formulation of trans free fatty acid margarines. In Proceedings of World Conference on Oilseed and Edible Oil Processing. Edited by Koseoglu S, Rhee K, Wilste RF. Champaign, IL: AOCS Press; 1998:143–146.

    Google Scholar 

  43. Yusoff M, Kifli H, Noorlida H, Rozig MP: Formulation of trans-free margarines. In Proceedings of World Conference on Oilseed and Edible Oil Processing. Edited by Koseoglu S, Rhee K, Wilste RF. Champaign, IL: AOCS Press; 1998:156–158.

    Google Scholar 

  44. Hunter JE: Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 2001, 36:655–668.

    Article  PubMed  CAS  Google Scholar 

  45. Judd JT, Baer DJ, Clevidence BA, et al.: Dietary cis and trans monounsaturated and saturated FA and plasma lipids and lipoproteins in men. Lipids 2002, 37:123–131.

    Article  PubMed  CAS  Google Scholar 

  46. Aro A, Jauhiainen M, Partanen R, et al.: Steraric acid, trans fatty acids, and dairy fat: effects on serum and lip0protein lipids, apolipoproteins, lipoprotein(a), and lipid transfer proteins in healthy subjects. Am J Clin Nutr 1997, 65:1419–1426.

    PubMed  CAS  Google Scholar 

  47. Bubeck DM, Fehr WR, Hammond EG: Inheritance of palmitic and stearic acid mutants of soybean. Crop Sci 1989, 29:652–656.

    Article  Google Scholar 

  48. Hammond EG, Fehr WR: Registration of A6 germplasm line of soybean. Crop Sci 1983, 23:192–193.

    Google Scholar 

  49. Liu K: Modifying soybean oil through plant breeding and genetic engineering. Proceedings of the World Conference on Oilseed Processing and Utilization. Edited by Wilson RF Champaign, IL: AOCS Press; 2001:84–89.

    Google Scholar 

  50. Liu K, Corliss G, Orthoefer FT, Brown EA: Properties and applications of specially bred soybean oil. Paper presented at the 88th American Oil Chemists’ Society Annual Meeting and Expo. Seattle, WA, May 11–14, 1997.

  51. Osorio J, Fernandez-Martinez J, Mancha M, Garces R: Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci 1995, 35:739–742.

    Article  CAS  Google Scholar 

  52. Facclotti MT, Bertain PB, Yuan L: Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nat Biotech 1999, 17:593–597.

    Article  CAS  Google Scholar 

  53. Liu Q, Surinder S, Green A: High-oleic and high stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr 2002; 21:205S-211S.

    PubMed  CAS  Google Scholar 

  54. List GR, Mounts TI, Orthoefer F, Neff WE: Effect of interesterification on the structure and physical properties of high-stearic acid soybean oils. J Am Oil Chem Soc 1997, 74:327–329.

    Google Scholar 

  55. List GR, Mounts TL, Orthoefer F, Neff WE: Potential margarine oils from genetically modified soybeans. J Am Oil Chem Soc 1996, 73:729–732.

    Article  CAS  Google Scholar 

  56. List GR: Trans acids in specialty lipids. Proceedings of the 3rd International World Conference on Nutraceutricals and Functional Foods. San Diego, CA, November 16–18, 2002. Edited by Koserln SF and Shahidi. Worldnutra 2002, 15:1–6.

  57. Binkoski AE, Kris-Etherton P, Nicolosi RJ: Lipid-lowering effects of a mid-oleic sunflower oil in moderately hypercholesterolemic men and women. FASEB J 2003, 17:A7930.

    Google Scholar 

  58. Truswell AS, Choudhury N: Monounsaturated oils do not all have the same effect on plasma cholesterol. Eur J Clin Nutr 1998, 52:312–315.

    Article  PubMed  CAS  Google Scholar 

  59. Wardlaw GM, Snook JT: Effect of diets high in butter, corn oil, or high-oleic acid sunflower oil on serum lipids and apolipoproteins in men. Am J Clin Nutr 1990, 51:815–821.

    PubMed  CAS  Google Scholar 

  60. Rudel LL, Haines JL, Sawyer JK: Effects on plasma lipoproteins on monounsaturated, saturated, and polyunsaturated fatty acids in the diet of African green monkeys. J Lipid Res 1990, 31:1873–1882.

    PubMed  CAS  Google Scholar 

  61. Rudel LL, Parks JS, Sawyer JK: Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery disease. Arterioscler Thromb Vasc Biol 1995, 15:2101–2110.

    PubMed  CAS  Google Scholar 

  62. James MJ, Ursin VM, Cleland LG: Metabolism of stearidonic acid in human subjects: comparison with the metabolism of other n-3 fatty acids. Am J Clin Nutr 2003, 77:1140–1145.

    PubMed  CAS  Google Scholar 

  63. Franklin ST, Martin KR, Baer RJ, et al.: Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milks of dairy cows. J Nutr 1999, 129:2048–2052.

    PubMed  CAS  Google Scholar 

  64. Offer NW, Marsden M, Dixon J, et al.: Effect of dietary fat supplements on levels of n-3 poly-unsaturated fatty acids, trans acids and conjugated linoleic acid in bovine milk. Animal Sci 1999, 69:613–625.

    CAS  Google Scholar 

  65. Kitessa SM, Gulati SK, Simos GC, et al.: Supplementation of grazing dairy cows with rumen-protected tuna oil enriches milk fat with n-3 fatty acids without affecting milk production or sensory characteristics. Br J Nutr 2004, 91:271–277.

    Article  PubMed  CAS  Google Scholar 

  66. Jarnum S, Jensen H: Medium chain triglycerides (MCT) in the treatment of protein-losing enteropathy and malabsorption syndromes. Scand J Gastroenterol 1966, 1:306–313.

    PubMed  CAS  Google Scholar 

  67. Babayan VK: Medium chain triglycerides and structured lipids. Lipids 1987, 22:417–420.

    Article  PubMed  CAS  Google Scholar 

  68. Bach AC, Ingenbleek Y, Frey A: The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J Lipid Res 1996, 37:708–726.

    PubMed  CAS  Google Scholar 

  69. St-Onge MP, Jones PJ: Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 2002, 132:329–332.

    PubMed  CAS  Google Scholar 

  70. St-Onge MP, Ross R, Parsons WD, et al.: Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes Res 2003, 11:395–402.

    Article  PubMed  CAS  Google Scholar 

  71. St-Onge MP, Jones PJ: Greater rise in fat oxidation with medium-chain triglyceride consumption relative to long-chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue. Int J Obes Relat Metab Disord 2003, 27:1565–1571.

    Article  PubMed  CAS  Google Scholar 

  72. St-Onge MP, Bourque C, Jones PJ, et al.: Medium-versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. Int J Obes Relat Metab Disord 2003, 27:95–102.

    Article  PubMed  CAS  Google Scholar 

  73. St-Onge MP, Lamarche B, Mauger JF, et al.: Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in men. J Nutr 2003, 133:1815–1820.

    PubMed  CAS  Google Scholar 

  74. Forbes Medi-Tech, Inc.: Vivola™ oil. http://www.forbesmedi.com/s/VivolaOil.asp. Accessed August 11, 2004.

  75. Taguchi H, Watanabe H, Onizawa K, et al.: Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J Am Coll Nutr 2000, 19:789–796.

    PubMed  CAS  Google Scholar 

  76. Tada N, Watanabe H, Matsuo N, et al.: Dynamics of postprandial remnant-like lipoprotein particles (RLP) in serum after loading of diacylglycerols. Clin Chem Acta 2001, 311:109–117.

    Article  CAS  Google Scholar 

  77. Yamamoto K, Asakawa H, Tokunaga K, et al.: Long-term ingestion of dietary diacylglycerol lowers serum triacylglycerol in Type II diabetic patients with hypertriglyceridemia. J Nutr 2001, 131:3204–3207.

    PubMed  CAS  Google Scholar 

  78. Nagao T, Watanabe H, Goto N, et al.: Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J Nutr 2000, 130:792–797.

    PubMed  CAS  Google Scholar 

  79. Maki KC, Davidson MH, Tsushima R, et al.: Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am J Clin Nutr 2002, 76:1230–1236.

    PubMed  CAS  Google Scholar 

  80. Kamphuis MM, Mela DJ, Westerterp-Plantenga MS: Diacylglycerols affect substrate oxidation and appetite in humans. Am J Clin Nutr 2003, 77:1133–1139.

    PubMed  CAS  Google Scholar 

  81. Meguro S, Higashi K, Hase T, et al.: Solubilisation of phytosterols in diacylglycerols versus triacylglycerol improves the serum cholesterol-lowering effect. Eur J Clin Nutr 2001, 55:513–517.

    Article  PubMed  CAS  Google Scholar 

  82. Enzymotech: Products: MultiOil Food. http://www.enzymotec.com/page.asp?div=Productsρoup=5. Accessed August 11, 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flickinger, B.D., Huth, P.J. Dietary fats and oils: Technologies for improving cardiovascular health. Curr Atheroscler Rep 6, 468–476 (2004). https://doi.org/10.1007/s11883-004-0088-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0088-4

Keywords

Navigation