Skip to main content

Advertisement

Log in

Vascular failure: A hypothesis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Although cardiac failure has been studied extensively, vascular failure is not a recognizable term. We suggest that it is reasonable to argue that failure of the vessel to control its mass, contractile capacity, and lumen will involve pathways similar to cardiac failure. Vascular failure, or perhaps more accurately arterial failure, has very different consequences. Failure to control mass and external diameter will result in hypertension or loss of lumen in atherosclerosis. We review what is known about this normal remodeling response and its failure, and propose directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wolinsky H, Glagov S: A lamellar unit of aortic medial structure and function in mammals. Circ Res 1967, 20:99–101.

    PubMed  CAS  Google Scholar 

  2. Glagov S, Weisenberg E, Zarins CK, et al.: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987, 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  3. Folkow B: Physiological aspects of primary hypertension. Physiol Rev 1982, 62:347–504.

    PubMed  CAS  Google Scholar 

  4. Cho A, Mitchell L, Koopmans D, Langille BL: Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ Res 1997, 81:328–337.

    PubMed  CAS  Google Scholar 

  5. Mulvany MJ, Hansen PK, Aalkjaer C: Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 1978, 43:854–863.

    PubMed  CAS  Google Scholar 

  6. Mulvany MJ: Resistance vessel growth and remodeling: cause or consequence in cardiovascular disease. J Hum Hypertens 1995, 9:479–485.

    PubMed  CAS  Google Scholar 

  7. Bray P, Agrotis A, Bobik A: Transforming growth factor-beta and receptor tyrosine kinase-activating growth factors negatively regulate collagen genes in smooth muscle of hypertensive rats. Hypertension 1998, 31:986–994.

    PubMed  CAS  Google Scholar 

  8. Bezie Y, Lamaziere JM, Laurent S, et al.: Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 1998, 18:1027–1034.

    Article  PubMed  CAS  Google Scholar 

  9. Himeno H, Crawford DC, Hosoi M, et al.: Angiotensin II alters aortic fibronectin independently of hypertension. Hypertension 1994, 23:823–826.

    PubMed  CAS  Google Scholar 

  10. Deindl E, Buschmann I, Hoefer IE, et al.: Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 2001, 89:779–786.

    Article  PubMed  CAS  Google Scholar 

  11. Hoefer IE, van Royen N, Buschmann IR, et al.: Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc Res 2001, 49:609–617.

    Article  PubMed  CAS  Google Scholar 

  12. Swynghedauw B, Baillard C: Biology of hypertensive cardiopathy. Curr Opin Cardiol 2000, 15:247–253.

    Article  PubMed  CAS  Google Scholar 

  13. Nicol RL, Frey N, Olson EN: From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annu Rev Genom Hum Genet 2000, 1:179–223.

    Article  CAS  Google Scholar 

  14. Schaub MC, Hefti MA, Harder BA, Eppenberger HM: Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 1997, 75:901–920.

    Article  PubMed  CAS  Google Scholar 

  15. Hunter JJ, Chien KR: Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999, 341:1276–1283.

    Article  PubMed  CAS  Google Scholar 

  16. Guyton AC: Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 1992, 19:12–18.

    Google Scholar 

  17. Dilley RJ, Schwartz SM: Vascular remodeling in the growth hormone transgenic mouse. Circ Res 1989, 65:1233–1240.

    PubMed  CAS  Google Scholar 

  18. Bohlooly Y, Carlson L, Olsson B, et al.: Vascular function and blood pressure in GH transgenic mice. Endocrinology 2001, 142:3317–3323.

    Article  Google Scholar 

  19. Guyton AC, Coleman TG, Cowley AW Jr, et al.: Systems analysis of arterial pressure regulation and hypertension. Ann Biomed Eng 1972, 1:254–281.

    Article  PubMed  CAS  Google Scholar 

  20. Karet FE, Lifton RP: Mutations contributing to human blood pressure variation. Recent Prog Horm Res 1997, 52:263–276.

    PubMed  CAS  Google Scholar 

  21. O’Brien ER, Alpers CE, Stewart DK, et al.: Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. Circ Res 1993, 73:223–231.

    PubMed  Google Scholar 

  22. Mintz GS, Kovach JA, Javier SP, et al.: Geometric remodeling is the predominant mechanism of late lumen loss after coronary angioplasty [abstract]. Circulation 1993, 88(4 Pt 2):I-654.

    Google Scholar 

  23. Nissen SE: Clinical images from intravascular ultrasound: coronary disease, plaque rupture, and intervention—the inside view. Am J Cardiol 2001, 88:16K-18K.

    Article  PubMed  CAS  Google Scholar 

  24. Stadius ML, Gown AM, Kernoff R, Schwartz SM: Does sequential balloon injury of an artery lead to a different outcome than a single injury? An experimental study of angioplasty. Coronary Artery Dis 1996, 7:247–255.

    CAS  Google Scholar 

  25. Kandabashi T, Shimokawa H, Miyata K, et al.: Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation 2000, 101:1319–1323.

    PubMed  CAS  Google Scholar 

  26. Hillebrands JL, Klatter FA, van Dijk WD, Rozing J: Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Nat Med 2002, 8:194–195.

    Article  PubMed  Google Scholar 

  27. Shimokawa H: Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J 2000, 64:1–12.

    Article  PubMed  CAS  Google Scholar 

  28. Adams LD, Geary RL, McManus B, Schwartz SM: A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 2000, 87:623–631.

    PubMed  CAS  Google Scholar 

  29. D’Angelo DD, Sakata Y, Lorenz JN, et al.: Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 1997, 94:8121–8126.

    Article  PubMed  Google Scholar 

  30. Adams JW, Sakata Y, Davis MG, et al.: Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A 1998, 95:10140–10145.

    Article  PubMed  CAS  Google Scholar 

  31. Mende U, Kagen A, Cohen A, et al.: Transient cardiac expression of constitutively active Gαq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci U S A 1998, 95:13893–13898.

    Article  PubMed  CAS  Google Scholar 

  32. Akhter SA, Luttrell LM, Rockman HA, et al.: Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998, 280:574–577.

    Article  PubMed  CAS  Google Scholar 

  33. Offermanns S, Zhao LP, Gohla A, et al.: Embryonic cardiomyocyte hypoplasia and craniofacial defects in G alpha q/G alpha 11-mutant mice. Eur Mol Biol Org J 1998, 17:4304–4312.

    CAS  Google Scholar 

  34. Sakata Y, Hoit BD, Liggett SB, et al.: Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 1998, 97:1488–1495.

    PubMed  CAS  Google Scholar 

  35. Rogers JH, Tamirisa P, Kovacs A, et al.: RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest 1999, 104:567–576.

    Article  PubMed  CAS  Google Scholar 

  36. Rogers JH, Tsirka A, Kovacs A, et al.: RGS4 reduces contractile dysfunction and hypertrophic gene induction in Gαq overexpressing mice. J Mol Cell Cardiol 2001, 33:209–218.

    Article  PubMed  CAS  Google Scholar 

  37. Vuong TM, Chabre M: Deactivation kinetics of the transduction cascade of vision. Proc Natl Acad Sci U S A 1991, 88:9813–9817.

    Article  PubMed  CAS  Google Scholar 

  38. Kazlauskas A, Bowen-Pope DF, Seifert RA, et al.: Different effects of homo- and heterodimers of platelet-derived growth factor A and B chains on human and mouse fibroblasts. Eur Mol Biol Org J 1988, 7:3727–3735.

    CAS  Google Scholar 

  39. Somlyo AP, Somlyo AV: Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol (London) 2000, 522(Pt 2):177–185.

    Article  CAS  Google Scholar 

  40. Kamm KE, Stull JT: Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 2001, 276:4527–4530.

    Article  PubMed  CAS  Google Scholar 

  41. Pfitzer G: Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 2001, 91:497–503.

    PubMed  CAS  Google Scholar 

  42. Yamakawa T, Tanaka S, Numaguchi K, et al.: Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 2000, 35:313–318.

    PubMed  CAS  Google Scholar 

  43. Numaguchi K, Eguchi S, Yamakawa T, et al.: Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res 1999, 85:5–11.

    PubMed  CAS  Google Scholar 

  44. Miao H, Li S, Hu YL, et al.: Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 2002, 115:2199–2206.

    PubMed  CAS  Google Scholar 

  45. Tzima E, del Pozo MA, Shattil SJ, et al.: Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. Eur Mol Biol Org J 2001, 20:4639–4647.

    CAS  Google Scholar 

  46. Lu J, Landerholm TE, Wei JS, et al.: Coronary smooth muscle differentiation from proepicardial cells requires RhoA-mediated actin reorganization and p160 Rho-kinase activity. Dev Biol 2001, 240:404–418.

    Article  PubMed  CAS  Google Scholar 

  47. Seasholtz TM, Zhang T, Morissette MR, et al.: Increased expression and activity of RhoA are associated with increased DNA synthesis and reduced p27(Kip 1) expression in the vasculature of hypertensive rats. Circ Res 2001, 89:488–495.

    Article  PubMed  CAS  Google Scholar 

  48. Lu Q, Sun EE, Klein RS, Flanagan JG: Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 2001, 105:69–79.

    Article  PubMed  CAS  Google Scholar 

  49. Dulin NO, Sorokin A, Reed E, et al.: RGS3 inhibits G protein-mediated signaling via translocation to the membrane and binding to Gα11. Mol Cell Biol 1999, 19:714–723.

    PubMed  CAS  Google Scholar 

  50. Saitoh O, Masuho I, Terakawa I, et al.: Regulator of G protein signaling 8 (RGS8) requires its NH2 terminus for subcellular localization and acute desensitization of G protein-gated K+ channels. J Biol Chem 2001, 276:5052–5058.

    Article  PubMed  CAS  Google Scholar 

  51. Richardson RM, Marjoram RJ, Barr AJ, Snyderman R: RGS4 inhibits platelet-activating factor receptor phosphorylation and cellular responses. Biochem 2001, 40:3583–3588.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, S.M., Geary, R.L. & Adams, L.D. Vascular failure: A hypothesis. Current Atherosclerosis Reports 5, 201–207 (2003). https://doi.org/10.1007/s11883-003-0025-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-003-0025-y

Keywords

Navigation