Skip to main content

Biomechanics in Small Artery Remodeling

  • Chapter
  • First Online:
Vascular Mechanobiology in Physiology and Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 8))

  • 619 Accesses

Abstract

In this chapter, we discuss how biomechanical forces influence vascular design. We will focus on the small arteries and arterioles, i.e., those vessels that together cause the majority of resistance for perfusion. We will do so because pathological alteration in the caliber of these resistance vessels, “remodeling,” is related to both hypertension and impaired local perfusion reserve and tissue ischemia. We will discuss the definitions of remodeling, its role as part of normal homeostasis, and its involvement in a range of pathologies. Subsequently, we address the evidence for the involvement of wall shear stress and wall stress under normal and pathological conditions, the need for an integrative, “systems level” understanding, and the translational perspectives of interfering with the regulation of resistance vessel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pries AR, Secomb TW (2005) Control of blood vessel structure: insights from theoretical models. Am J Physiol Heart Circ Physiol 288(3):H1010–H1015. https://doi.org/10.1152/ajpheart.00752.2004

    Article  CAS  PubMed  Google Scholar 

  2. Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A 12(3):207–214. https://doi.org/10.1073/pnas.12.3.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lacolley P, Regnault V, Segers P, Laurent S (2017) Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev 97(4):1555–1617. https://doi.org/10.1152/physrev.00003.2017

    Article  CAS  PubMed  Google Scholar 

  4. Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC (2020) Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 17(1):52–63. https://doi.org/10.1038/s41569-019-0239-5

    Article  PubMed  Google Scholar 

  5. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20):1431–1438. https://doi.org/10.1056/nejm199405193302008

    Article  CAS  PubMed  Google Scholar 

  6. Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD (1996) Vascular remodeling. Hypertension 28(3):505–506

    CAS  PubMed  Google Scholar 

  7. Mulvany MJ (1999) Vascular remodelling of resistance vessels: can we define this? Cardiovasc Res 41(1):9–13. https://doi.org/10.1016/s0008-6363(98)00289-2

    Article  CAS  PubMed  Google Scholar 

  8. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ (1993) Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 21(4):391–397. https://doi.org/10.1161/01.hyp.21.4.391

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Lemus LA, Hill MA, Bolz SS, Pohl U, Meininger GA (2004) Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB J 18(6):708–710. https://doi.org/10.1096/fj.03-0634fje

    Article  CAS  PubMed  Google Scholar 

  10. Palao T, Sward K, Jongejan A, Moerland PD, de Vos J, van Weert A et al (2015) Gene expression and MicroRNA expression analysis in small arteries of spontaneously hypertensive rats. Evidence for ER stress. PLoS One 10(9):e0137027. https://doi.org/10.1371/journal.pone.0137027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagenseil JE, Mecham RP (2012) Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 5(3):264–273. https://doi.org/10.1007/s12265-012-9349-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nishijima Y, Akamatsu Y, Weinstein PR, Liu J (2015) Collaterals: implications in cerebral ischemic diseases and therapeutic interventions. Brain Res 1623:18–29. https://doi.org/10.1016/j.brainres.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bakker EN, Buus CL, VanBavel E, Mulvany MJ (2004) Activation of resistance arteries with endothelin-1: from vasoconstriction to functional adaptation and remodeling. J Vasc Res 41(2):174–182. https://doi.org/10.1159/000077288

    Article  CAS  PubMed  Google Scholar 

  14. Bakker EN, Matlung HL, Bonta P, de Vries CJ, van Rooijen N, Vanbavel E (2008) Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone. Cardiovasc Res 78(2):341–348. https://doi.org/10.1093/cvr/cvn050

    Article  CAS  PubMed  Google Scholar 

  15. Bakker EN, Sorop O, Spaan JA, VanBavel E (2004) Remodeling of resistance arteries in organoid culture is modulated by pressure and pressure pulsation and depends on vasomotion. Am J Physiol Heart Circ Physiol 286(6):H2052–H2056. https://doi.org/10.1152/ajpheart.00978.2003

    Article  CAS  PubMed  Google Scholar 

  16. Bakker EN, van der Meulen ET, van den Berg BM, Everts V, Spaan JA, VanBavel E (2002) Inward remodeling follows chronic vasoconstriction in isolated resistance arteries. J Vasc Res 39(1):12–20. https://doi.org/10.1159/000048989

    Article  CAS  PubMed  Google Scholar 

  17. del Campo L, Guvenc Tuna B, Ferrer M, van Bavel E, Bakker EN (2013) Testosterone and beta-oestradiol prevent inward remodelling of rat small mesenteric arteries: role of NO and transglutaminase. Clin Sci (Lond) 124(12):719–728. https://doi.org/10.1042/CS20120700

    Article  CAS  Google Scholar 

  18. Sorop O, Bakker EN, Pistea A, Spaan JA, VanBavel E (2006) Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels. Am J Physiol Heart Circ Physiol 291(3):H1236–H1245. https://doi.org/10.1152/ajpheart.00838.2005

    Article  CAS  PubMed  Google Scholar 

  19. van den Akker J, Schoorl MJ, Bakker EN, Vanbavel E (2010) Small artery remodeling: current concepts and questions. J Vasc Res 47(3):183–202. https://doi.org/10.1159/000255962

    Article  PubMed  Google Scholar 

  20. Bakker EN, Buus CL, Spaan JA, Perree J, Ganga A, Rolf TM et al (2005) Small artery remodeling depends on tissue-type transglutaminase. Circ Res 96(1):119–126. https://doi.org/10.1161/01.res.0000151333.56089.66

    Article  CAS  PubMed  Google Scholar 

  21. Bakker EN, Pistea A, Spaan JA, Rolf T, de Vries CJ, van Rooijen N et al (2006) Flow-dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: possible compensation by macrophage-derived factor XIII. Circ Res 99(1):86–92. https://doi.org/10.1161/01.RES.0000229657.83816.a7

    Article  CAS  PubMed  Google Scholar 

  22. Pistea A, Bakker EN, Spaan JA, Hardeman MR, van Rooijen N, VanBavel E (2008) Small artery remodeling and erythrocyte deformability in L-NAME-induced hypertension: role of transglutaminases. J Vasc Res 45(1):10–18. https://doi.org/10.1159/000109073

    Article  CAS  PubMed  Google Scholar 

  23. van den Akker J, VanBavel E, van Geel R, Matlung HL, Guvenc Tuna B, Janssen GM et al (2011) The redox state of transglutaminase 2 controls arterial remodeling. PLoS One 6(8):e23067. https://doi.org/10.1371/journal.pone.0023067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petersen-Jones HG, Johnson KB, Hitomi K, Tykocki NR, Thompson JM, Watts SW (2015) Transglutaminase activity is decreased in large arteries from hypertensive rats compared with normotensive controls. Am J Physiol Heart Circ Physiol 308(6):H592–H602. https://doi.org/10.1152/ajpheart.00402.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakker EN, van Der Meulen ET, Spaan JA, VanBavel E (2000) Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. Am J Physiol Heart Circ Physiol 278(4):H1233–H1240

    Article  CAS  Google Scholar 

  26. Engholm M, Eftekhari A, Chwatko G, Bald E, Mulvany MJ (2011) Effect of cystamine on blood pressure and vascular characteristics in spontaneously hypertensive rats. J Vasc Res 48(6):476–484. https://doi.org/10.1159/000327773

    Article  CAS  PubMed  Google Scholar 

  27. Lemkens P, Boari G, Fazzi G, Janssen G, Murphy-Ullrich J, Schiffers P, De Mey J (2012) Thrombospondin-1 in early flow-related remodeling of mesenteric arteries from young normotensive and spontaneously hypertensive rats. Open Cardiovasc Med J 6:50–59. https://doi.org/10.2174/1874192401206010050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez-Lemus LA, Hill MA, Meininger GA (2009) The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 24:45–57. https://doi.org/10.1152/physiol.00029.2008

    Article  Google Scholar 

  29. Mulvany MJ (2005) Abnormalities of the resistance vasculature in hypertension: correction by vasodilator therapy. Pharmacol Rep 57(Suppl):144–150

    PubMed  Google Scholar 

  30. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 138(17):e426–e483. https://doi.org/10.1161/CIR.0000000000000597

    Article  PubMed  Google Scholar 

  31. Lee RM, Dickhout JG, Sandow SL (2017) Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 40(4):311–323. https://doi.org/10.1038/hr.2016.145

    Article  PubMed  Google Scholar 

  32. Park JB, Schiffrin EL (2001) Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 19(5):921–930. https://doi.org/10.1097/00004872-200105000-00013

    Article  CAS  PubMed  Google Scholar 

  33. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML et al (2003) Prognostic significance of small-artery structure in hypertension. Circulation 108(18):2230–2235. https://doi.org/10.1161/01.CIR.0000095031.51492.C5

    Article  PubMed  Google Scholar 

  34. Intengan HD, Thibault G, Li JS, Schiffrin EL (1999) Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats : effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 100(22):2267–2275. https://doi.org/10.1161/01.cir.100.22.2267

    Article  CAS  PubMed  Google Scholar 

  35. Bakker EN, Groma G, Spijkers LJ, de Vos J, van Weert A, van Veen H et al (2014) Heterogeneity in arterial remodeling among sublines of spontaneously hypertensive rats. PLoS One 9(9):e107998. https://doi.org/10.1371/journal.pone.0107998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hajdu MA, Baumbach GL (1994) Mechanics of large and small cerebral arteries in chronic hypertension. Am J Phys 266(3 Pt 2):H1027–H1033. https://doi.org/10.1152/ajpheart.1994.266.3.H1027

    Article  CAS  Google Scholar 

  37. Struijker Boudier HA (1999) Arteriolar and capillary remodelling in hypertension. Drugs 59 Spec No:37–40

    CAS  PubMed  Google Scholar 

  38. Bosch AJ, Harazny JM, Kistner I, Friedrich S, Wojtkiewicz J, Schmieder RE (2017) Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovasc Disord 17(1):300. https://doi.org/10.1186/s12872-017-0732-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gueugneau M, Coudy-Gandilhon C, Meunier B, Combaret L, Taillandier D, Polge C et al (2016) Lower skeletal muscle capillarization in hypertensive elderly men. Exp Gerontol 76:80–88. https://doi.org/10.1016/j.exger.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  40. Naessens DMP, de Vos J, VanBavel E, Bakker E (2018) Blood-brain and blood-cerebrospinal fluid barrier permeability in spontaneously hypertensive rats. Fluids Barriers CNS 15(1):26. https://doi.org/10.1186/s12987-018-0112-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christensen KL, Mulvany MJ (2001) Vasodilatation, not hypotension, improves resistance vessel design during treatment of essential hypertension: a literature survey. J Hypertens 19(6):1001–1006. https://doi.org/10.1097/00004872-200106000-00002

    Article  CAS  PubMed  Google Scholar 

  42. Mathiassen ON, Buus NH, Larsen ML, Mulvany MJ, Christensen KL (2007) Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 25(5):1027–1034. https://doi.org/10.1097/HJH.0b013e3280acac75

    Article  CAS  PubMed  Google Scholar 

  43. Schiffrin EL, Park JB, Intengan HD, Touyz RM (2000) Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 101(14):1653–1659. https://doi.org/10.1161/01.cir.101.14.1653

    Article  CAS  PubMed  Google Scholar 

  44. Levi Marpillat N, Macquin-Mavier I, Tropeano AI, Bachoud-Levi AC, Maison P (2013) Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens 31(6):1073–1082. https://doi.org/10.1097/HJH.0b013e3283603f53

    Article  CAS  PubMed  Google Scholar 

  45. Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B et al (2015) Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 29(2):113–130. https://doi.org/10.1007/s40263-015-0230-6

    Article  CAS  PubMed  Google Scholar 

  46. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375. https://doi.org/10.1056/NEJM198705283162204

    Article  CAS  PubMed  Google Scholar 

  47. Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO et al (2008) Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res 102(7):795–803. https://doi.org/10.1161/circresaha.108.172528

    Article  CAS  PubMed  Google Scholar 

  48. Verhoeff BJ, Siebes M, Meuwissen M, Atasever B, Voskuil M, de Winter RJ et al (2005) Influence of percutaneous coronary intervention on coronary microvascular resistance index. Circulation 111(1):76–82. https://doi.org/10.1161/01.cir.0000151610.98409.2f

    Article  PubMed  Google Scholar 

  49. Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR (2015) Vascular stiffness in insulin resistance and obesity. Front Physiol 6:231. https://doi.org/10.3389/fphys.2015.00231

    Article  PubMed  PubMed Central  Google Scholar 

  50. De Ciuceis C, Porteri E, Rizzoni D, Corbellini C, La Boria E, Boari GE et al (2011) Effects of weight loss on structural and functional alterations of subcutaneous small arteries in obese patients. Hypertension 58(1):29–36. https://doi.org/10.1161/HYPERTENSIONAHA.111.171082

    Article  CAS  PubMed  Google Scholar 

  51. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A et al (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103(9):1238–1244. https://doi.org/10.1161/01.cir.103.9.1238

    Article  CAS  PubMed  Google Scholar 

  52. Bender SB, Castorena-Gonzalez JA, Garro M, Reyes-Aldasoro CC, Sowers JR, DeMarco VG, Martinez-Lemus LA (2015) Regional variation in arterial stiffening and dysfunction in Western diet-induced obesity. Am J Physiol Heart Circ Physiol 309(4):H574–H582. https://doi.org/10.1152/ajpheart.00155.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Villalba N, Martinez P, Briones AM, Sanchez A, Salaices M, Garcia-Sacristan A et al (2009) Differential structural and functional changes in penile and coronary arteries from obese Zucker rats. Am J Physiol Heart Circ Physiol 297(2):H696–H707. https://doi.org/10.1152/ajpheart.01308.2008

    Article  CAS  PubMed  Google Scholar 

  54. Stepp DW, Pollock DM, Frisbee JC (2004) Low-flow vascular remodeling in the metabolic syndrome X. Am J Physiol Heart Circ Physiol 286(3):H964–H970. https://doi.org/10.1152/ajpheart.00836.2003

    Article  CAS  PubMed  Google Scholar 

  55. Carr CL, Qi Y, Davidson B, Chadderdon S, Jayaweera AR, Belcik JT et al (2011) Dysregulated selectin expression and monocyte recruitment during ischemia-related vascular remodeling in diabetes mellitus. Arterioscler Thromb Vasc Biol 31(11):2526–2533. https://doi.org/10.1161/ATVBAHA.111.230177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao YJ, Yang LF, Stead S, Lee RM (2008) Flow-induced vascular remodeling in the mesenteric artery of spontaneously hypertensive rats. Can J Physiol Pharmacol 86(11):737–744. https://doi.org/10.1139/Y08-079

    Article  CAS  PubMed  Google Scholar 

  57. VanBavel E, Spaan JA (1992) Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ Res 71(5):1200–1212

    Article  CAS  Google Scholar 

  58. Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77(5):1017–1023. https://doi.org/10.1161/01.res.77.5.1017

    Article  CAS  PubMed  Google Scholar 

  59. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915. https://doi.org/10.1161/01.res.75.5.904

    Article  CAS  PubMed  Google Scholar 

  60. Lehoux S, Jones EA (2016) Shear stress, arterial identity and atherosclerosis. Thromb Haemost 115(3):467–473. https://doi.org/10.1160/TH15-10-0791

    Article  PubMed  Google Scholar 

  61. Pistea A, Bakker EN, Spaan JA, VanBavel E (2005) Flow inhibits inward remodeling in cannulated porcine small coronary arteries. Am J Physiol Heart Circ Physiol 289(6):H2632–H2640. https://doi.org/10.1152/ajpheart.00205.2005

    Article  CAS  PubMed  Google Scholar 

  62. Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA (2016) Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest 126(3):821–828. https://doi.org/10.1172/jci83083

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H (2006) Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med 259(4):393–400. https://doi.org/10.1111/j.1365-2796.2006.01625.x

    Article  CAS  PubMed  Google Scholar 

  64. Tarbell JM, Simon SI, Curry FR (2014) Mechanosensing at the vascular interface. Annu Rev Biomed Eng 16:505–532. https://doi.org/10.1146/annurev-bioeng-071813-104908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):176–181. https://doi.org/10.1038/nature10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515(7526):279–282. https://doi.org/10.1038/nature13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S (2016) Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest 126(12):4527–4536. https://doi.org/10.1172/jci87343

    Article  PubMed  PubMed Central  Google Scholar 

  68. Garland CJ, Dora KA (2017) EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf) 219(1):152–161. https://doi.org/10.1111/apha.12649

    Article  CAS  Google Scholar 

  69. Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ et al (2017) Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat Commun 8(1):350. https://doi.org/10.1038/s41467-017-00429-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Albarran-Juarez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B et al (2018) Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med 215(10):2655–2672. https://doi.org/10.1084/jem.20180483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR et al (2015) Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep 13(6):1161–1171. https://doi.org/10.1016/j.celrep.2015.09.072

    Article  CAS  PubMed  Google Scholar 

  72. Xu J, Mathur J, Vessieres E, Hammack S, Nonomura K, Favre J et al (2018) GPR68 senses flow and is essential for vascular physiology. Cell 173(3):762–775.e716. https://doi.org/10.1016/j.cell.2018.03.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tanweer O, Wilson TA, Metaxa E, Riina HA, Meng H (2014) A comparative review of the hemodynamics and pathogenesis of cerebral and abdominal aortic aneurysms: lessons to learn from each other. J Cerebrovasc Endovasc Neurosurg 16(4):335–349. https://doi.org/10.7461/jcen.2014.16.4.335

    Article  PubMed  PubMed Central  Google Scholar 

  74. Soldozy S, Norat P, Elsarrag M, Chatrath A, Costello JS, Sokolowski JD et al (2019) The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurg Focus 47(1):E11. https://doi.org/10.3171/2019.4.focus19232

    Article  PubMed  Google Scholar 

  75. Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, Pallares J et al (2018) Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 international aneurysm CFD challenge. Cardiovasc Eng Technol 9(4):544–564. https://doi.org/10.1007/s13239-018-00374-2

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tuttle JL, Hahn TL, Sanders BM, Witzmann FA, Miller SJ, Dalsing MC, Unthank JL (2002) Impaired collateral development in mature rats. Am J Physiol Heart Circ Physiol 283(1):H146–H155. https://doi.org/10.1152/ajpheart.00766.2001

    Article  CAS  PubMed  Google Scholar 

  77. Tuttle JL, Sanders BM, Burkhart HM, Fath SW, Kerr KA, Watson WC et al (2002) Impaired collateral artery development in spontaneously hypertensive rats. Microcirculation 9(5):343–351. https://doi.org/10.1038/sj.mn.7800151

    Article  CAS  PubMed  Google Scholar 

  78. Vessieres E, Freidja ML, Loufrani L, Fassot C, Henrion D (2012) Flow (shear stress)-mediated remodeling of resistance arteries in diabetes. Vasc Pharmacol 57(5-6):173–178. https://doi.org/10.1016/j.vph.2012.03.006

    Article  CAS  Google Scholar 

  79. Bagi Z, Koller A, Kaley G (2003) Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 285(4):H1404–H1410. https://doi.org/10.1152/ajpheart.00235.2003

    Article  CAS  PubMed  Google Scholar 

  80. Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90(11):1159–1166. https://doi.org/10.1161/01.res.0000020401.61826.ea

    Article  CAS  PubMed  Google Scholar 

  81. Huang A, Sun D, Kaley G, Koller A (1998) Superoxide released to high intra-arteriolar pressure reduces nitric oxide-mediated shear stress- and agonist-induced dilations. Circ Res 83(9):960–965. https://doi.org/10.1161/01.res.83.9.960

    Article  CAS  PubMed  Google Scholar 

  82. Schaper W, Buschmann I (1999) Arteriogenesis, the good and bad of it. Cardiovasc Res 43(4):835–837. https://doi.org/10.1016/s0008-6363(99)00191-1

    Article  CAS  PubMed  Google Scholar 

  83. Heuslein JL, Meisner JK, Li X, Song J, Vincentelli H, Leiphart RJ et al (2015) Mechanisms of amplified arteriogenesis in collateral artery segments exposed to reversed flow direction. Arterioscler Thromb Vasc Biol 35(11):2354–2365. https://doi.org/10.1161/atvbaha.115.305775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104(1):5–21. https://doi.org/10.1007/s00395-008-0760-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hollander MR, Horrevoets AJ, van Royen N (2014) Cellular and pharmacological targets to induce coronary arteriogenesis. Curr Cardiol Rev 10(1):29–37. https://doi.org/10.2174/1573403x113099990003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Welten SM, Goossens EA, Quax PH, Nossent AY (2016) The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res 110(1):6–22. https://doi.org/10.1093/cvr/cvw039

    Article  CAS  PubMed  Google Scholar 

  87. Pries AR, Reglin B, Secomb TW (2005) Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46(4):725–731. https://doi.org/10.1161/01.HYP.0000184428.16429.be

    Article  CAS  PubMed  Google Scholar 

  88. Davis MJ (2012) Perspective: physiological role(s) of the vascular myogenic response. Microcirculation 19(2):99–114. https://doi.org/10.1111/j.1549-8719.2011.00131.x

    Article  CAS  PubMed  Google Scholar 

  89. Hong KS, Kim K, Hill MA (2020) Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction. J Exerc Rehabil 16(3):207–215. https://doi.org/10.12965/jer.2040432.216

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schubert R, Mulvany MJ (1999) The myogenic response: established facts and attractive hypotheses. Clin Sci (Lond) 96(4):313–326

    Article  CAS  Google Scholar 

  91. VanBavel E, Mulvany MJ (1994) Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries. J Physiol 477(Pt 1):103–115. https://doi.org/10.1113/jphysiol.1994.sp020175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacobsen JC, Holstein-Rathlou NH (2012) A life under pressure: circumferential stress in the microvascular wall. Basic Clin Pharmacol Toxicol 110(1):26–34. https://doi.org/10.1111/j.1742-7843.2011.00796.x

    Article  CAS  PubMed  Google Scholar 

  93. VanBavel E, Siersma P, Spaan JA (2003) Elasticity of passive blood vessels: a new concept. Am J Physiol Heart Circ Physiol 285(5):H1986–H2000. https://doi.org/10.1152/ajpheart.00248.2003

    Article  CAS  PubMed  Google Scholar 

  94. VanBavel E, Bakker EN, Pistea A, Sorop O, Spaan JA (2006) Mechanics of microvascular remodeling. Clin Hemorheol Microcirc 34(1-2):35–41

    PubMed  Google Scholar 

  95. Bakker EN, Pistea A, VanBavel E (2008) Transglutaminases in vascular biology: relevance for vascular remodeling and atherosclerosis. J Vasc Res 45(4):271–278. https://doi.org/10.1159/000113599

    Article  CAS  PubMed  Google Scholar 

  96. Huelsz-Prince G, Belkin AM, VanBavel E, Bakker EN (2013) Activation of extracellular transglutaminase 2 by mechanical force in the arterial wall. J Vasc Res 50(5):383–395. https://doi.org/10.1159/000354222

    Article  CAS  PubMed  Google Scholar 

  97. Bloksgaard M, Leurgans TM, Spronck B, Heusinkveld MHG, Thorsted B, Rosenstand K et al (2017) Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries. Am J Physiol Heart Circ Physiol 313(1):H164–H178. https://doi.org/10.1152/ajpheart.00110.2017

    Article  PubMed  Google Scholar 

  98. Clifford PS, Ella SR, Stupica AJ, Nourian Z, Li M, Martinez-Lemus LA et al (2011) Spatial distribution and mechanical function of elastin in resistance arteries: a role in bearing longitudinal stress. Arterioscler Thromb Vasc Biol 31(12):2889–2896. https://doi.org/10.1161/ATVBAHA.111.236570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bardy N, Karillon GJ, Merval R, Samuel JL, Tedgui A (1995) Differential effects of pressure and flow on DNA and protein synthesis and on fibronectin expression by arteries in a novel organ culture system. Circ Res 77(4):684–694. https://doi.org/10.1161/01.res.77.4.684

    Article  CAS  PubMed  Google Scholar 

  100. Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A (2004) Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation 109(8):1041–1047. https://doi.org/10.1161/01.CIR.0000115521.95662.7A

    Article  CAS  PubMed  Google Scholar 

  101. Majesky MW, Horita H, Ostriker A, Lu S, Regan JN, Bagchi A et al (2017) Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ Res 120(2):296–311. https://doi.org/10.1161/circresaha.116.309322

    Article  CAS  PubMed  Google Scholar 

  102. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M (2006) Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 21:134–145. https://doi.org/10.1152/physiol.00053.2005

    Article  CAS  Google Scholar 

  103. Vanbavel E, Tuna BG (2014) Integrative modeling of small artery structure and function uncovers critical parameters for diameter regulation. PLoS One 9(1):e86901. https://doi.org/10.1371/journal.pone.0086901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pries AR, Secomb TW (2014) Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology (Bethesda) 29(6):446–455. https://doi.org/10.1152/physiol.00012.2014

    Article  Google Scholar 

Download references

Acknowledgments

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik N. T. P. Bakker .

Editor information

Editors and Affiliations

Ethics declarations

Sources of funding: None

Conflict of interest: The authors declare that they have no conflict of interest.

Ethical approval: Not applicable

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakker, E.N.T.P., van Bavel, E. (2021). Biomechanics in Small Artery Remodeling. In: Hecker, M., Duncker, D.J. (eds) Vascular Mechanobiology in Physiology and Disease. Cardiac and Vascular Biology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-63164-2_3

Download citation

Publish with us

Policies and ethics