Skip to main content

Advertisement

Log in

Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we provide a comprehensive update on current scientific advances and emerging therapeutic approaches in the field of multiple sclerosis.

Recent Findings

Multiple sclerosis (MS) is a common disorder characterized by inflammation and degeneration within the central nervous system (CNS). MS is the leading cause of non-traumatic disability in the young adult population. Through ongoing research, an improved understanding of the disease underlying mechanisms and contributing factors has been achieved. As a result, therapeutic advancements and interventions have been developed specifically targeting the inflammatory components that influence disease outcome. Recently, a new type of immunomodulatory treatment, known as Bruton tyrosine kinase (BTK) inhibitors, has surfaced as a promising tool to combat disease outcomes. Additionally, there is a renewed interested in Epstein-Barr virus (EBV) as a major potentiator of MS. Current research efforts are focused on addressing the gaps in our understanding of the pathogenesis of MS, particularly with respect to non-inflammatory drivers.

Summary

Significant and compelling evidence suggests that the pathogenesis of MS is complex and requires a comprehensive, multilevel intervention strategy. This review aims to provide an overview of MS pathophysiology and highlights the most recent advances in disease-modifying therapies and other therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378(2):169–80. https://doi.org/10.1056/NEJMra1401483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the atlas of MS, third edition. Mult Scler Houndmills Basingstoke Engl. 2020;26(14):1816. https://doi.org/10.1177/1352458520970841.

  3. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73. https://doi.org/10.1016/S1474-4422(17)30470-2.

    Article  PubMed  Google Scholar 

  4. Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet Lond Engl. 2017;389(10076):1336–46. https://doi.org/10.1016/S0140-6736(16)30959-X.

    Article  Google Scholar 

  5. Rojas JI, Romano M, Patrucco L, Cristiano E. A systematic review about the epidemiology of primary progressive multiple sclerosis in Latin America and the Caribbean. Mult Scler Relat Disord. 2018;22:1–7. https://doi.org/10.1016/j.msard.2018.02.024.

    Article  PubMed  Google Scholar 

  6. Waubant E, Lucas R, Mowry E, et al. Environmental and genetic risk factors for MS: an integrated review. Ann Clin Transl Neurol. 2019;6(9):1905–22. https://doi.org/10.1002/acn3.50862.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patsopoulos NA. Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb Perspect Med. 2018;8(7):a028951. https://doi.org/10.1101/cshperspect.a028951.

  8. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93. https://doi.org/10.1016/S1474-4422(14)70256-X.

    Article  CAS  PubMed  Google Scholar 

  9. Kipp M, van der Star B, Vogel DYS, et al. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord. 2012;1(1):15–28. https://doi.org/10.1016/j.msard.2011.09.002.

    Article  PubMed  Google Scholar 

  10. Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B cells in the multiple sclerosis central nervous system: trafficking and contribution to cns-compartmentalized inflammation. Front Immunol. 2015;6. Accessed April 12, 2023. https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2015.00636.

  11. Lassmann H. Mechanisms of white matter damage in multiple sclerosis. Glia. 2014;62(11):1816–30. https://doi.org/10.1002/glia.22597.

    Article  PubMed  Google Scholar 

  12. Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17. https://doi.org/10.1002/1531-8249(200006)47:6%3c707::AID-ANA3%3e3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  13. Shen S, Sandoval J, Swiss VA, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci. 2008;11(9):1024–34. https://doi.org/10.1038/nn.2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lucchinetti CF, Popescu BFG, Bunyan RF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188–97. https://doi.org/10.1056/NEJMoa1100648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tur C, Carbonell-Mirabent P, Cobo-Calvo Á, et al. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis. JAMA Neurol. 2023;80(2):151–60. https://doi.org/10.1001/jamaneurol.2022.4655.

    Article  PubMed  Google Scholar 

  16. Portaccio E, Bellinvia A, Fonderico M, et al. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain. 2022;145(8):2796–805. https://doi.org/10.1093/brain/awac111.

    Article  PubMed  Google Scholar 

  17. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS - Craner - 2005 - Glia - Wiley Online Library. Accessed April 12, 2023. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/glia.20112.

  18. Pennisi G, Cornelius C, Cavallaro MM, et al. Redox regulation of cellular stress response in multiple sclerosis. Biochem Pharmacol. 2011;82(10):1490–9. https://doi.org/10.1016/j.bcp.2011.07.092.

    Article  CAS  PubMed  Google Scholar 

  19. Kapoor R, Furby J, Hayton T, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9(7):681–8. https://doi.org/10.1016/S1474-4422(10)70131-9.

    Article  CAS  PubMed  Google Scholar 

  20. Moll C, Mourre C, Lazdunski M, Ulrich J. Increase of sodium channels in demyelinated lesions of multiple sclerosis. Brain Res. 1991;556(2):311–6. https://doi.org/10.1016/0006-8993(91)90321-L.

    Article  CAS  PubMed  Google Scholar 

  21. Lee JY, Taghian K, Petratos S. Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability? Acta Neuropathol Commun. 2014;2(1):97. https://doi.org/10.1186/s40478-014-0097-7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140(3):527–46. https://doi.org/10.1093/brain/aww258.

    Article  PubMed  Google Scholar 

  23. Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain J Neurol. 2007;130(Pt 4):1089–104. https://doi.org/10.1093/brain/awm038.

    Article  Google Scholar 

  24. Geurts JJ, Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol. 2008;7(9):841–51. https://doi.org/10.1016/S1474-4422(08)70191-1.

    Article  PubMed  Google Scholar 

  25. Marrie RA, Allegretta M, Barcellos LF, et al. From the prodromal stage of multiple sclerosis to disease prevention. Nat Rev Neurol. 2022;18(9):559–72. https://doi.org/10.1038/s41582-022-00686-x.

    Article  PubMed  Google Scholar 

  26. Wijnands JM, Zhu F, Kingwell E, et al. Five years before multiple sclerosis onset: phenotyping the prodrome. Mult Scler Houndmills Basingstoke Engl. 2019;25(8):1092–101. https://doi.org/10.1177/1352458518783662.

    Article  Google Scholar 

  27. Marrie RA, O’Mahony J, Maxwell CJ, et al. High rates of health care utilization in pediatric multiple sclerosis: a Canadian population-based study. PLoS ONE. 2019;14(6):e0218215. https://doi.org/10.1371/journal.pone.0218215.

  28. Disanto G, Zecca C, MacLachlan S, et al. Prodromal symptoms of multiple sclerosis in primary care. Ann Neurol. 2018;83(6):1162–73. https://doi.org/10.1002/ana.25247.

    Article  PubMed  Google Scholar 

  29. Makhani N, Tremlett H. The multiple sclerosis prodrome. Nat Rev Neurol. 2021;17(8):515–21. https://doi.org/10.1038/s41582-021-00519-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cortese M, Riise T, Bjørnevik K, et al. Preclinical disease activity in multiple sclerosis: a prospective study of cognitive performance prior to first symptom. Ann Neurol. 2016;80(4):616–24. https://doi.org/10.1002/ana.24769.

    Article  PubMed  Google Scholar 

  31. Bjornevik K, Munger KL, Cortese M, et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol. 2020;77(1):58–64. https://doi.org/10.1001/jamaneurol.2019.3238.

    Article  PubMed  Google Scholar 

  32. Lebrun C, Blanc F, Brassat D, Zephir H, de Seze J, CFSEP. Cognitive function in radiologically isolated syndrome. Mult Scler Houndmills Basingstoke Engl. 2010;16(8):919–925. https://doi.org/10.1177/1352458510375707.

  33. Lebrun-Frenay C, Kantarci O, Siva A, et al. Radiologically isolated syndrome: 10-year risk estimate of a clinical event. Ann Neurol. 2020;88(2):407–17. https://doi.org/10.1002/ana.25799.

    Article  CAS  PubMed  Google Scholar 

  34. Sawcer S, Franklin RJM, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13(7):700–9. https://doi.org/10.1016/S1474-4422(14)70041-9.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen NM, Westergaard T, Rostgaard K, et al. Familial risk of multiple sclerosis: a nationwide cohort study. Am J Epidemiol. 2005;162(8):774–8. https://doi.org/10.1093/aje/kwi280.

    Article  PubMed  Google Scholar 

  36. O’Gorman C, Lin R, Stankovich J, Broadley SA. Modelling genetic susceptibility to multiple sclerosis with family data. Neuroepidemiology. 2013;40(1):1–12. https://doi.org/10.1159/000341902.

    Article  PubMed  Google Scholar 

  37. Westerlind H, Ramanujam R, Uvehag D, et al. Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden. Brain. 2014;137(3):770–8. https://doi.org/10.1093/brain/awt356.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fagnani C, Neale MC, Nisticò L, et al. Twin studies in multiple sclerosis: a meta-estimation of heritability and environmentality. Mult Scler J. 2015;21(11):1404–13. https://doi.org/10.1177/1352458514564492.

    Article  CAS  Google Scholar 

  39. Consortium IMSG. Multiple Sclerosis Genomic Map implicates peripheral immune cells & microglia in susceptibility. Science. 2019;365(6460). https://doi.org/10.1126/science.aav7188.

  40. Ma Q, Shams H, Didonna A, et al. Integration of epigenetic and genetic profiles identifies multiple sclerosis disease-critical cell types and genes. Commun Biol. 2023;6(1):1–10. https://doi.org/10.1038/s42003-023-04713-5.

    Article  Google Scholar 

  41. van Pelt ED, Mescheriakova JY, Makhani N, et al. Risk genes associated with pediatric-onset MS but not with monophasic acquired CNS demyelination. Neurology. 2013;81(23):1996–2001. https://doi.org/10.1212/01.wnl.0000436934.40034eb.

    Article  CAS  PubMed  Google Scholar 

  42. Shams H, Shao X, Santaniello A, et al. Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans. Brain. 2023;146(2):645–56. https://doi.org/10.1093/brain/awac092.

    Article  PubMed  Google Scholar 

  43. Breedon JR, Marshall CR, Giovannoni G, et al. Polygenic risk score prediction of multiple sclerosis in individuals of South Asian ancestry. Brain Commun. 2023;5(2):fcad041. https://doi.org/10.1093/braincomms/fcad041.

  44. Harari G, Gurevich M, Dolev M, Falb RZ, Achiron A. Faster progression to multiple sclerosis disability is linked to neuronal pathways associated with neurodegeneration: an ethnicity study. PLoS ONE. 2023;18(2):e0280515. https://doi.org/10.1371/journal.pone.0280515.

  45. Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51–64. https://doi.org/10.1038/s41579-022-00770-5.

    Article  CAS  PubMed  Google Scholar 

  46. •• Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301. https://doi.org/10.1126/science.abj8222. This study established EBV as a necessary, yet not sufficient contributor to MS pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  47. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology. 1999;53(3):457–465.

  48. Kaegi C, Steiner UC, Wuest B, Crowley C, Boyman O. Systematic review of safety and efficacy of atacicept in treating immune-mediated disorders. Front Immunol. 2020;11. Accessed April 14, 2023. https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2020.00433.

  49. Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017;16:41–50. https://doi.org/10.1016/j.ebiom.2017.01.042.

    Article  PubMed  PubMed Central  Google Scholar 

  50. van Nierop GP, Mautner J, Mitterreiter JG, Hintzen RQ, Verjans GMGM. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult Scler Houndmills Basingstoke Engl. 2016;22(3):279–91. https://doi.org/10.1177/1352458515588581.

    Article  CAS  Google Scholar 

  51. Wang Z, Kennedy PG, Dupree C, et al. Antibodies from multiple sclerosis brain identified Epstein-Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J Neuroimmune Pharmacol. 2021;16(3):567–80. https://doi.org/10.1007/s11481-020-09948-1.

    Article  PubMed  Google Scholar 

  52. Bech E, Lycke J, Gadeberg P, et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology. 2002;58(1):31–6. https://doi.org/10.1212/wnl.58.1.31.

    Article  CAS  PubMed  Google Scholar 

  53. Torkildsen Ø, Myhr KM, Skogen V, Steffensen LH, Bjørnevik K. Tenofovir as a treatment option for multiple sclerosis. Mult Scler Relat Disord. 2020;46:102569. https://doi.org/10.1016/j.msard.2020.102569.

  54. Hedström AK, Hillert J, Olsson T, Alfredsson L. Smoking and multiple sclerosis susceptibility. Eur J Epidemiol. 2013;28(11):867–74. https://doi.org/10.1007/s10654-013-9853-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hedström AK, Sundqvist E, Bäärnhielm M, et al. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain. 2011;134(3):653–64. https://doi.org/10.1093/brain/awq371.

    Article  PubMed  Google Scholar 

  56. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8. https://doi.org/10.1001/jama.296.23.2832.

    Article  CAS  PubMed  Google Scholar 

  57. Munger KL, Zhang SM, O’Reilly E, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62(1):60–5. https://doi.org/10.1212/01.WNL.0000101723.79681.38.

    Article  CAS  PubMed  Google Scholar 

  58. Mokry LE, Ross S, Ahmad OS, et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLOS Med. 2015;12(8):e1001866. https://doi.org/10.1371/journal.pmed.1001866.

  59. Rhead B, Bäärnhielm M, Gianfrancesco M, et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol Genet. 2016;2(5). https://doi.org/10.1212/NXG.0000000000000097.

  60. Ascherio A, Munger KL, Lünemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol. 2012;8(11):602–12. https://doi.org/10.1038/nrneurol.2012.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vasileiou ES, Hu C, Bernstein CN, et al. Association of Vitamin D Polygenic Risk Scores and Disease Outcome in People With Multiple Sclerosis. Neurol - Neuroimmunol Neuroinflammation. 2023;10(1). https://doi.org/10.1212/NXI.0000000000200062.

  62. Fitzgerald KC, Munger KL, Köchert K, et al. Association of vitamin D levels with multiple sclerosis activity and progression in patients receiving interferon beta-1b. JAMA Neurol. 2015;72(12):1458–65. https://doi.org/10.1001/jamaneurol.2015.2742.

    Article  PubMed  Google Scholar 

  63. Camu W, Lehert P, Pierrot-Deseilligny C, et al. Cholecalciferol in relapsing-remitting MS: a randomized clinical trial (CHOLINE). Neurol - Neuroimmunol Neuroinflammation. 2019;6(5). https://doi.org/10.1212/NXI.0000000000000597.

  64. Stein MS, Liu Y, Gray OM, et al. A randomized trial of high-dose vitamin D2 in relapsing-remitting multiple sclerosis. Neurology. 2011;77(17):1611–8. https://doi.org/10.1212/WNL.0b013e3182343274.

    Article  CAS  PubMed  Google Scholar 

  65. Mowry EM, Waubant E, McCulloch CE, et al. Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis. Ann Neurol. 2012;72(2):234–40. https://doi.org/10.1002/ana.23591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cassard SD, Fitzgerald KC, Qian P, et al. High-dose vitamin D3 supplementation in relapsing-remitting multiple sclerosis: a randomised clinical trial. eClinicalMedicine. 2023;59. https://doi.org/10.1016/j.eclinm.2023.101957.

  67. Wesnes K, Riise T, Casetta I, et al. Body size and the risk of multiple sclerosis in Norway and Italy: the EnvIMS study. Mult Scler Houndmills Basingstoke Engl. 2015;21(4):388–95. https://doi.org/10.1177/1352458514546785.

    Article  Google Scholar 

  68. Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80(6):548–52. https://doi.org/10.1212/WNL.0b013e31828154f3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73(19):1543–50. https://doi.org/10.1212/WNL.0b013e3181c0d6e0.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gianfrancesco MA, Glymour MM, Walter S, et al. Causal effect of genetic variants associated with body mass index on multiple sclerosis susceptibility. Am J Epidemiol. 2017;185(3):162–71. https://doi.org/10.1093/aje/kww120.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mokry LE, Ross S, Timpson NJ, Sawcer S, Smith GD, Richards JB. Obesity and multiple sclerosis: a Mendelian randomization study. PLOS Med. 2016;13(6):e1002053. https://doi.org/10.1371/journal.pmed.1002053.

  72. Hedström AK, Lima Bomfim I, Barcellos L, et al. Interaction between adolescent obesity and HLA risk genes in the etiology of multiple sclerosis. Neurology. 2014;82(10):865–72. https://doi.org/10.1212/WNL.0000000000000203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bjørnevik K, Chitnis T, Ascherio A, Munger KL. Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2017;23(14):1830–8. https://doi.org/10.1177/1352458517691150.

    Article  CAS  Google Scholar 

  74. Hwang S, Garcia-Dominguez MA, Fitzgerald KC, Saylor DR. Association of multiple sclerosis prevalence with sociodemographic, health systems, and lifestyle factors on a national and regional level. Neurology. 2022;99(16):e1813–23. https://doi.org/10.1212/WNL.0000000000200962.

    Article  Google Scholar 

  75. Dobson R, Jitlal M, Marshall CR, et al. Ethnic and socioeconomic associations with multiple sclerosis risk. Ann Neurol. 2020;87(4):599–608. https://doi.org/10.1002/ana.25688.

    Article  PubMed  Google Scholar 

  76. Dobson R, Rice DR, D’hooghe M, et al. Social determinants of health in multiple sclerosis. Nat Rev Neurol. 2022;18(12):723–734. https://doi.org/10.1038/s41582-022-00735-5.

  77. Vasileiou ES, Filippatou AG, Pimentel Maldonado D, et al. Socioeconomic disparity is associated with faster retinal neurodegeneration in multiple sclerosis. Brain. 2021;144(12):3664–73. https://doi.org/10.1093/brain/awab342.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pimentel Maldonado DA, Eusebio JR, Amezcua L, et al. The impact of socioeconomic status on mental health and health-seeking behavior across race and ethnicity in a large multiple sclerosis cohort. Mult Scler Relat Disord. 2022;58:103451. https://doi.org/10.1016/j.msard.2021.103451.

  79. Noorimotlagh Z, Azizi M, Pan HF, Mami S, Mirzaee SA. Association between air pollution and Multiple Sclerosis: A systematic review. Environ Res. 2021;196:110386. https://doi.org/10.1016/j.envres.2020.110386.

  80. Palacios N, Munger KL, Fitzgerald KC, et al. Exposure to particulate matter air pollution and risk of multiple sclerosis in two large cohorts of US nurses. Environ Int. 2017;109:64–72. https://doi.org/10.1016/j.envint.2017.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mar S, Liang S, Waltz M, et al. Several household chemical exposures are associated with pediatric-onset multiple sclerosis. Ann Clin Transl Neurol. 2018;5(12):1513–21. https://doi.org/10.1002/acn3.663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hedström AK, Hössjer O, Katsoulis M, Kockum I, Olsson T, Alfredsson L. Organic solvents and MS susceptibility: interaction with MS risk HLA genes. Neurology. 2018;91(5):e455–62. https://doi.org/10.1212/WNL.0000000000005906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Filipi M, Jack S. Interferons in the Treatment of Multiple Sclerosis. Int J MS Care. 2020;22(4):165–72. https://doi.org/10.7224/1537-2073.2018-063.

    Article  PubMed  Google Scholar 

  84. Calabresi PA, Kieseier BC, Arnold DL, et al. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–65. https://doi.org/10.1016/S1474-4422(14)70068-7.

    Article  CAS  PubMed  Google Scholar 

  85. Tselis A, Khan O, Lisak RP. Glatiramer acetate in the treatment of multiple sclerosis. Neuropsychiatr Dis Treat. 2007;3(2):259–267.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654627/.Accessed May 3, 2023.

  86. Cohen JA, Comi G, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019;18(11):1021–33. https://doi.org/10.1016/S1474-4422(19)30238-8.

    Article  CAS  PubMed  Google Scholar 

  87. Kappos L, Bar-Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. The Lancet. 2018;391(10127):1263–73. https://doi.org/10.1016/S0140-6736(18)30475-6.

    Article  CAS  Google Scholar 

  88. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107. https://doi.org/10.1056/NEJMoa1114287.

    Article  CAS  PubMed  Google Scholar 

  89. Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087–97. https://doi.org/10.1056/NEJMoa1206328.

    Article  CAS  PubMed  Google Scholar 

  90. O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303. https://doi.org/10.1056/NEJMoa1014656.

    Article  PubMed  Google Scholar 

  91. Fox RJ, Wiendl H, Wolf C, et al. A double-blind, randomized, placebo-controlled phase 2 trial evaluating the selective dihydroorotate dehydrogenase inhibitor vidofludimus calcium in relapsing-remitting multiple sclerosis. Ann Clin Transl Neurol. 2022;9(7):977–87. https://doi.org/10.1002/acn3.51574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2003;348(1):15–23. https://doi.org/10.1056/NEJMoa020696.

    Article  CAS  PubMed  Google Scholar 

  93. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911–23. https://doi.org/10.1056/NEJMoa044396.

    Article  CAS  PubMed  Google Scholar 

  94. Buron MD, Christensen JR, Pontieri L, et al. Natalizumab treatment of multiple sclerosis — a Danish nationwide study with 13 years of follow-up. Mult Scler Relat Disord. 2023;74:104713. https://doi.org/10.1016/j.msard.2023.104713.

  95. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20. https://doi.org/10.1056/NEJMoa1606468.

    Article  CAS  PubMed  Google Scholar 

  96. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34. https://doi.org/10.1056/NEJMoa1601277.

    Article  CAS  PubMed  Google Scholar 

  97. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88. https://doi.org/10.1056/NEJMoa0706383.

    Article  CAS  PubMed  Google Scholar 

  98. Salzer J, Svenningsson R, Alping P, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–81. https://doi.org/10.1212/WNL.0000000000003331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Steinman L, Fox E, Hartung HP, et al. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N Engl J Med. 2022;387(8):704–14. https://doi.org/10.1056/NEJMoa2201904.

    Article  CAS  PubMed  Google Scholar 

  100. Bar-Or A, Grove RA, Austin DJ, et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurology. 2018;90(20):e1805–14. https://doi.org/10.1212/WNL.0000000000005516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383(6):546–57. https://doi.org/10.1056/NEJMoa1917246.

    Article  CAS  PubMed  Google Scholar 

  102. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. The Lancet. 2012;380(9856):1819–28. https://doi.org/10.1016/S0140-6736(12)61769-3.

    Article  CAS  Google Scholar 

  103. Havrdova E, Horakova D, Kovarova I. Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord. 2015;8(1):31–45. https://doi.org/10.1177/1756285614563522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giovannoni G, Soelberg Sorensen P, Cook S, et al. Safety and efficacy of cladribine tablets in patients with relapsing–remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult Scler J. 2018;24(12):1594–604. https://doi.org/10.1177/1352458517727603.

    Article  CAS  Google Scholar 

  105. Giovannoni G, Boyko A, Correale J, et al. Long-term follow-up of patients with relapsing multiple sclerosis from the CLARITY/CLARITY Extension cohort of CLASSIC-MS: an ambispective study. Mult Scler J. 2023:13524585231161494. https://doi.org/10.1177/13524585231161494.

  106. Rice GPA, Filippi M, Comi G, Group for the CCSG and for the CMS. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Neurology. 2000;54(5):1145–1155. https://doi.org/10.1212/WNL.54.5.1145.

  107. Liang C, Tian D, Ren X, et al. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem. 2018;151:315–26. https://doi.org/10.1016/j.ejmech.2018.03.062.

    Article  CAS  PubMed  Google Scholar 

  108. • Reich DS, Arnold DL, Vermersch P, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20(9):729–738. https://doi.org/10.1016/S1474-4422(21)00237-4A new drug class, BTK inhibitors, showed radiological benefit in RMS treatment in this phase II randomized clinical trial. This prompted the initiation of larger phase III trials for RRMS and PMS to elucidate the benefit of BTK inhibitors in MS.

  109. Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019;380(25):2406–17. https://doi.org/10.1056/NEJMoa1901981.

    Article  CAS  PubMed  Google Scholar 

  110. Højsgaard Chow H, Talbot J, Lundell H, et al. Dimethyl fumarate treatment in patients with primary progressive multiple sclerosis: a randomized, controlled trial. Neurol Neuroimmunol Neuroinflammation. 2021;8(5):e1037. https://doi.org/10.1212/NXI.0000000000001037.

  111. Kapoor R, Ho PR, Campbell N, et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. Lancet Neurol. 2018;17(5):405–15. https://doi.org/10.1016/S1474-4422(18)30069-3.

    Article  CAS  PubMed  Google Scholar 

  112. Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol. 2007;61(1):14–24. https://doi.org/10.1002/ana.21079.

    Article  CAS  PubMed  Google Scholar 

  113. Andersen O, Elovaara I, Färkkilä M, et al. Multicentre, randomised, double blind, placebo controlled, phase III study of weekly, low dose, subcutaneous interferon beta-1a in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2004;75(5):706–10. https://doi.org/10.1136/jnnp.2003.010090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fox RJ, Coffey CS, Conwit R, et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N Engl J Med. 2018;379(9):846–55. https://doi.org/10.1056/NEJMoa1803583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bermel RA, Fedler JK, Kaiser P, et al. Optical coherence tomography outcomes from SPRINT-MS, a multicenter, randomized, double-blind trial of ibudilast in progressive multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2021;27(9):1384–90. https://doi.org/10.1177/1352458520964409.

    Article  CAS  Google Scholar 

  116. Vermersch P, Brieva-Ruiz L, Fox RJ, et al. Efficacy and safety of masitinib in progressive forms of multiple sclerosis: a randomized, phase 3, clinical trial. Neurol Neuroimmunol Neuroinflammation. 2022;9(3):e1148. https://doi.org/10.1212/NXI.0000000000001148.

  117. Tiziana Life Sciences LTD. A Phase 1b, Double-blind, randomized, placebo controlled, multiple ascending dose study of the safety, tolerability and immune effects of the intranasal anti-cd3 monoclonal antibody foralumab in primary and secondary progressive MS. Clinicaltrials.gov; 2022. Accessed April 30, 2023. https://clinicaltrials.gov/ct2/show/NCT05029609.

  118. Pender MP, Csurhes PA, Smith C, et al. Epstein-Barr virus–specific T cell therapy for progressive multiple sclerosis. JCI Insight. 3(22):e124714. https://doi.org/10.1172/jci.insight.124714.

  119. Cohen JA, Lublin FD, Lock C, et al. Evaluation of neurotrophic factor secreting mesenchymal stem cells in progressive multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2023;29(1):92–106. https://doi.org/10.1177/13524585221122156.

    Article  CAS  Google Scholar 

  120. Mansoor SR, Zabihi E, Ghasemi-Kasman M. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci. 2019;235:116830. https://doi.org/10.1016/j.lfs.2019.116830.

  121. Miller AE, Chitnis T, Cohen BA, et al. Autologous hematopoietic stem cell transplant in multiple sclerosis: recommendations of the National Multiple Sclerosis Society. JAMA Neurol. 2021;78(2):241–6. https://doi.org/10.1001/jamaneurol.2020.4025.

    Article  PubMed  Google Scholar 

  122. Franklin RJM, Goldman SA. Glia disease and repair—remyelination. Cold Spring Harb Perspect Biol. 2015;7(7):a020594. https://doi.org/10.1101/cshperspect.a020594.

  123. Cadavid D, Mellion M, Hupperts R, et al. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2019;18(9):845–56. https://doi.org/10.1016/S1474-4422(19)30137-1.

    Article  CAS  PubMed  Google Scholar 

  124. Cadavid D, Balcer L, Galetta S, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(3):189–99. https://doi.org/10.1016/S1474-4422(16)30377-5.

    Article  CAS  PubMed  Google Scholar 

  125. Tourbah A, Lebrun-Frenay C, Edan G, et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study. Mult Scler J. 2016;22(13):1719–31. https://doi.org/10.1177/1352458516667568.

    Article  CAS  Google Scholar 

  126. Cree BAC, Cutter G, Wolinsky JS, et al. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2020;19(12):988–97. https://doi.org/10.1016/S1474-4422(20)30347-1.

    Article  CAS  PubMed  Google Scholar 

  127. Robinson AP, Zhang JZ, Titus HE, et al. Nanocatalytic activity of clean-surfaced, faceted nanocrystalline gold enhances remyelination in animal models of multiple sclerosis. Sci Rep. 2020;10(1):1936. https://doi.org/10.1038/s41598-020-58709-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brown JWL, Cunniffe NG, Prados F, et al. Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurol. 2021;20(9):709–20. https://doi.org/10.1016/S1474-4422(21)00179-4.

    Article  CAS  PubMed  Google Scholar 

  129. Huang JK, Jarjour AA, Nait Oumesmar B, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci. 2011;14(1):45–53. https://doi.org/10.1038/nn.2702.

    Article  CAS  PubMed  Google Scholar 

  130. Ruschil C, Dubois E, Stefanou MI, et al. Treatment of progressive multiple sclerosis with high-dose all-trans retinoic acid – no clear evidence of positive disease modifying effects. Neurol Res Pract. 2021;3(1):25. https://doi.org/10.1186/s42466-021-00121-4.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mei F, Fancy SPJ, Shen YAA, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med. 2014;20(8):954–60. https://doi.org/10.1038/nm.3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Green AJ, Gelfand JM, Cree BA, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet Lond Engl. 2017;390(10111):2481–9. https://doi.org/10.1016/S0140-6736(17)32346-2.

    Article  CAS  Google Scholar 

  133. Schwartzbach CJ, Grove RA, Brown R, Tompson D, Then Bergh F, Arnold DL. Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. J Neurol. 2017;264(2):304–15. https://doi.org/10.1007/s00415-016-8341-7.

    Article  CAS  PubMed  Google Scholar 

  134. Wooliscroft L, Altowaijri G, Hildebrand A, et al. Phase I randomized trial of liothyronine for remyelination in multiple sclerosis: a dose-ranging study with assessment of reliability of visual outcomes. Mult Scler Relat Disord. 2020;41:102015. https://doi.org/10.1016/j.msard.2020.102015.

  135. Rankin KA, Mei F, Kim K, et al. Selective estrogen receptor modulators enhance cns remyelination independent of estrogen receptors. J Neurosci. 2019;39(12):2184–94. https://doi.org/10.1523/JNEUROSCI.1530-18.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Metzger-Peter K, Kremer LD, Edan G, et al. The TOTEM RRMS (testosterone treatment on neuroprotection and myelin repair in relapsing remitting multiple sclerosis) trial: study protocol for a randomized, double-blind, placebo-controlled trial. Trials. 2020;21(1):591. https://doi.org/10.1186/s13063-020-04517-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chataway J, Schuerer N, Alsanousi A, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. The Lancet. 2014;383(9936):2213–21. https://doi.org/10.1016/S0140-6736(13)62242-4.

    Article  CAS  Google Scholar 

  138. Sorensen PS, Lycke J, Erälinna JP, et al. Simvastatin as add-on therapy to interferon β-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol. 2011;10(8):691–701. https://doi.org/10.1016/S1474-4422(11)70144-2.

    Article  CAS  PubMed  Google Scholar 

  139. Togha M, Karvigh SA, Nabavi M, et al. Simvastatin treatment in patients with relapsing-remitting multiple sclerosis receiving interferon beta 1a: a double-blind randomized controlled trial. Mult Scler Houndmills Basingstoke Engl. 2010;16(7):848–54. https://doi.org/10.1177/1352458510369147.

    Article  CAS  Google Scholar 

  140. Raftopoulos R, Hickman SJ, Toosy A, et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):259–69. https://doi.org/10.1016/S1474-4422(16)00004-1.

    Article  CAS  PubMed  Google Scholar 

  141. Villoslada P, Masso M, Paris S, Hutchings S, Koch A. A Phase 1 randomized study on the safety and pharmacokinetics of OCS-05, a neuroprotective disease modifying treatment for Acute Optic Neuritis and Multiple Sclerosis. Sci Rep. 2023;13(1):5099. https://doi.org/10.1038/s41598-023-32278-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Küchlin S, Ihorst G, Grotejohann B, et al. Treatment with erythropoietin for patients with optic neuritis: long-term follow-up. Neurol - Neuroimmunol Neuroinflammation. 2023;10(4). https://doi.org/10.1212/NXI.0000000000200067.

  143. Spain R, Powers K, Murchison C, et al. Lipoic acid in secondary progressive MS: a randomized controlled pilot trial. Neurol - Neuroimmunol Neuroinflammation. 2017;4(5). https://doi.org/10.1212/NXI.0000000000000374.

  144. Schoeps VA, Graves JS, Stern WA, et al. N-Acetyl cysteine as a neuroprotective agent in progressive multiple sclerosis (NACPMS) trial: study protocol for a randomized, double-blind, placebo-controlled add-on phase 2 trial. Contemp Clin Trials. 2022;122:106941. https://doi.org/10.1016/j.cct.2022.106941.

  145. Chataway J, Angelis FD, Connick P, et al. Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial. Lancet Neurol. 2020;19(3):214–25. https://doi.org/10.1016/S1474-4422(19)30485-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med. 2000;6(10):1167–75. https://doi.org/10.1038/80516.

    Article  CAS  PubMed  Google Scholar 

  147. Walczak A, Siger M, Ciach A, Szczepanik M, Selmaj K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 2013;70(9):1105–9. https://doi.org/10.1001/jamaneurol.2013.3022.

    Article  PubMed  Google Scholar 

  148. Chataway J, Martin K, Barrell K, et al. Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple sclerosis. Neurology. 2018;90(11):e955–62. https://doi.org/10.1212/WNL.0000000000005118.

    Article  CAS  PubMed  Google Scholar 

  149. Immune Response BioPharma, Inc. A phase II study of NeuroVaxTM, a Therapeutic TCR peptide vaccine for spms of multiple sclerosis. Clinicaltrials.gov. 2020. https://clinicaltrials.gov/ct2/show/NCT02057159. Accessed April 30, 2023.

  150. Willekens B, Cools N. Beyond the magic bullet: current progress of therapeutic vaccination in multiple sclerosis. CNS Drugs. 2018;32(5):401–10. https://doi.org/10.1007/s40263-018-0518-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bhargava P, Anthony DC. Metabolomics in multiple sclerosis disease course and progression. Mult Scler J. 2020;26(5):591–8. https://doi.org/10.1177/1352458519876020.

    Article  Google Scholar 

  152. Bhargava P, Smith MD, Mische L, et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest. 130(7):3467–3482. https://doi.org/10.1172/JCI129401.

  153. Al KF, Craven LJ, Gibbons S, et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: a pilot randomized controlled trial. Mult Scler J - Exp Transl Clin. 2022;8(2):20552173221086664. https://doi.org/10.1177/20552173221086662.

    Article  Google Scholar 

  154. Golpour F, Abbasi-Alaei M, Babaei F, et al. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother. 2023;163:114763. https://doi.org/10.1016/j.biopha.2023.114763.

  155. Prosperini L, Piattella MC, Giannì C, Pantano P. Functional and structural brain plasticity enhanced by motor and cognitive rehabilitation in multiple sclerosis. Neural Plast. 2015;2015:e481574. https://doi.org/10.1155/2015/481574.

  156. Wooliscroft L. Aerobic exercise to improve mobility in multiple sclerosis: optimizing design and execution for a full-scale multimodal remyelination clinical trial. Clinicaltrials.gov. 2023. https://clinicaltrials.gov/ct2/show/NCT04539002. Accessed April 30, 2023.

  157. Ontaneda D, Tallantyre EC, Raza PC, et al. Determining the effectiveness of early intensive versus escalation approaches for the treatment of relapsing-remitting multiple sclerosis: the DELIVER-MS study protocol. Contemp Clin Trials. 2020;95:106009. https://doi.org/10.1016/j.cct.2020.106009.

  158. TREAT-MS. https://treat-mstrial.org/. Accessed April 27, 2023.

  159. University of Colorado, Denver. Discontinuation of disease modifying therapies (DMTs) in multiple sclerosis (MS). Clinicaltrials.gov. 2022. https://clinicaltrials.gov/ct2/show/results/NCT03073603. Accessed April 25, 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn C. Fitzgerald.

Ethics declarations

Conflict of Interest

Drs. Fitzgerald and Vasileiou have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasileiou, E.S., Fitzgerald, K.C. Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Curr Allergy Asthma Rep 23, 481–496 (2023). https://doi.org/10.1007/s11882-023-01102-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01102-0

Keywords

Navigation