Skip to main content

Advertisement

Log in

Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases

  • Basic and Applied Science (I Lewkowich, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Atopic dermatitis (AD) and allergic asthma are complex disorders with significant public health burden. This review provides an overview of the recent developments on Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse counterpart MrgprB2) as a potential candidate to target neuro-immune interaction in AD and allergic asthma.

Recent Findings

Domestic allergens directly activate sensory neurons to release substance P (SP), which induces mast cell degranulation via MrgprB2 and drives type 2 skin inflammation in AD. MRGPRX2 expression is upregulated in human lung mast cells and serum of asthmatic patients. Both SP and hemokinin-1 (HK-1 generated from macrophages, bronchial cells, and mast cells) cause degranulation of human mast cells via MRGPRX2.

Summary

MrgprB2 contributes to mast cell-nerve interaction in the pathogenesis of AD. Furthermore, asthma severity is associated with increased MRGPRX2 expression in mast cells. Thus, MRGPRX2 could serve as a novel target for modulating AD and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

SP:

Substance P

HK-1:

Hemokinin-1

NK-1R:

Neurokinin-1 receptor

MRGPRX2/B2:

Mas-related G protein-coupled receptor-X2/B2

FcεRI:

High-affinity immunoglobulin receptor

HDM:

House dust mite

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Center for Health Statistics. FastStats - Allergies and Hay Fever [Internet]. 2019. Available from: https://www.cdc.gov/nchs/fastats/allergies.htm. Accessed 8 May 2020.

  2. American College of Allergy, Asthma & Immunology. Allergy Facts | ACAAI Public Website [Internet]. 2015. Available from: https://acaai.org/news/facts-statistics/allergies. Accessed 10 May 2020.

  3. da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738.

    Article  PubMed  CAS  Google Scholar 

  4. Galli SJ, Tsai M. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol. 2010;40(7):1843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  7. Smarr CB, Bryce PJ, Miller SD. Antigen-specific tolerance in immunotherapy of Th2-associated allergic diseases. Crit Rev Immunol. 2013;33(5):389–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–79.

    Article  CAS  PubMed  Google Scholar 

  9. Galli SJ, Gordon JR, Wershil BK. Cytokine production by mast cells and basophils. Curr Opin Immunol. 1991;3(6):865–72.

    Article  CAS  PubMed  Google Scholar 

  10. Galli SJ, Gordon JR, Wershil BK. Mast cell cytokines in allergy and inflammation. Agents Actions Suppl. 1993;43:209–20.

    CAS  PubMed  Google Scholar 

  11. Echtenacher B, Männel DN, Hültner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature. 1996;381(6577):75–7.

    Article  CAS  PubMed  Google Scholar 

  12. Galli SJ, Maurer M, Lantz CS. Mast cells as sentinels of innate immunity. Curr Opin Immunol. 1999;11(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  13. Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy. 2008;38(1):4–18.

    Article  CAS  PubMed  Google Scholar 

  14. Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F, et al. Prostaglandin D2 pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y. Mast cells in atopic dermatitis. Curr Opin Immunol. 2009;21(6):666–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schuerwegh AJ, De Clerck LS, De Schutter L, Bridts CH, Verbruggen A, Stevens WJ. Flow cytometric detection of type 1 (IL-2, IFN-gamma) and type 2 (IL-4, IL-5) cytokines in T-helper and T-suppressor/cytotoxic cells in rheumatoid arthritis, allergic asthma and atopic dermatitis. Cytokine. 1999;11(10):783–8.

    Article  CAS  PubMed  Google Scholar 

  17. Johansson SGO, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, et al. Revised nomenclature for allergy for global use: report of the nomenclature review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832–6.

    Article  CAS  PubMed  Google Scholar 

  18. Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol. 2017;29(6):247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kabata H, Artis D. Neuro-immune crosstalk and allergic inflammation. J Clin Invest. 2019;129(4):1475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dothel G, Barbaro MR, Boudin H, Vasina V, Cremon C, Gargano L, et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2015;148(5):1002–1011.e4.

    Article  CAS  PubMed  Google Scholar 

  21. Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989;97(3):575–85.

    Article  CAS  PubMed  Google Scholar 

  22. •• Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A mast cell-specific receptor mediates neurogenic inflammation and Pain. Neuron. 2019;101(3):412–420.e3 This study demonstrated novel role of MrgprB2 in neurogenic inflammation and pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, et al. Activation of mast-cell-expressed Mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity. 2019;50(5):1163–1171.e5 This study showed that MrgprB2 mediates non-histaminergic itch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. Molecular signatures of G-protein-coupled receptors. Nature. 2013;494(7436):185–94.

    Article  CAS  PubMed  Google Scholar 

  25. Gurevich VV, Gurevich EV. GPCR signaling regulation: the role of GRKs and Arrestins. Front Pharmacol. 2019;10:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–92.

    Article  CAS  PubMed  Google Scholar 

  27. Subramanian H, Gupta K, Guo Q, Price R, Ali H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells. J Biol Chem. 2011;286(52):44739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subramanian H, Gupta K, Lee D, Bayir AK, Ahn H, Ali H. β-Defensins activate human mast cells via Mas-related gene-X2 (MrgX2). J Immunol. 2013;191(1):345–52.

    Article  CAS  PubMed  Google Scholar 

  29. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–41.

    Article  CAS  PubMed  Google Scholar 

  30. Navinés-Ferrer A, Serrano-Candelas E, Lafuente A, Muñoz-Cano R, Martín M, Gastaminza G. MRGPRX2-mediated mast cell response to drugs used in perioperative procedures and anaesthesia. Sci Rep. 2018;8(1):11628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci. 2011;1217:83–95.

    Article  CAS  PubMed  Google Scholar 

  32. Bellucci F, Carini F, Catalani C, Cucchi P, Lecci A, Meini S, et al. Pharmacological profile of the novel mammalian tachykinin, hemokinin 1. Br J Pharmacol. 2002;135(1):266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berger A, Paige CJ. Hemokinin-1 has substance P-like function in U-251 MG astrocytoma cells: a pharmacological and functional study. J Neuroimmunol. 2005;164(1–2):48–56.

    Article  CAS  PubMed  Google Scholar 

  34. •• Manorak W, Idahosa C, Gupta K, Roy S, Panettieri R, Ali H. Upregulation of Mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respir Res. 2018;19(1):1 This study showed that MRGPRX2 is upregulated in asthmatic lungs and that HK-1 activates MRGPRX2 not NK-1R.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, et al. Heterogeneity of human mast cells with respect to MRGPRX2 receptor expression and function. Front Cell Neurosci. 2019;13:299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol. 1997;61(3):233–45.

    Article  CAS  PubMed  Google Scholar 

  37. Gurish MF, Austen KF. Developmental origin and functional specialization of mast cell subsets. Immunity. 2012;37(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  38. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology. 2008;123(3):398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bischoff SC, Schwengberg S, Lorentz A, Manns MP, Bektas H, Sann H, et al. Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol Motil. 2004;16(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  40. Sumpter TL, Ho CH, Pleet AR, Tkacheva OA, Shufesky WJ, Rojas-Canales DM, et al. Autocrine hemokinin-1 functions as endogenous adjuvant for IgE-mediated mast cell inflammatory responses. J Allergy Clin Immunol. 2015;135(4):1019–1030.e8.

    Article  CAS  PubMed  Google Scholar 

  41. Fujisawa D, Kashiwakura J-I, Kita H, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, et al. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol. 2014;134(3):622–633.e9.

    Article  CAS  PubMed  Google Scholar 

  42. Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, Furuno M, et al. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun. 2006;349(4):1322–8.

    Article  CAS  PubMed  Google Scholar 

  43. Burstein ES, Ott TR, Feddock M, Ma J-N, Fuhs S, Wong S, et al. Characterization of the Mas-related gene family: structural and functional conservation of human and rhesus MrgX receptors. Br J Pharmacol. 2006;147(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  44. Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol. 2016;138(3):700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. •• Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, Bonnart C, et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol. 2019;20(11):1435–43 This important study implicated the novel role MrgprB2 as a facilitator of mast cell-nerve interaction in atopic dermatitis-like type 2 skin inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• An J, Lee J-H, Won H-K, Kang Y, Song W-J, Kwon H-S, et al. Clinical significance of serum MRGPRX2 as a new biomarker in allergic asthma. Allergy. 2020;75(4):959–62 This study identified upregulation of serum MRGPRX2 as a new biomarker for allergic asthma.

    Article  PubMed  Google Scholar 

  47. Taylor-Clark TE, Nassenstein C, Undem BJ. Leukotriene D4 increases the excitability of capsaicin-sensitive nasal sensory nerves to electrical and chemical stimuli. Br J Pharmacol. 2008;154(6):1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000;6(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  49. Shim W-S, Oh U. Histamine-induced itch and its relationship with pain. Mol Pain. 2008;4:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. • Forsythe P. Mast cells in neuroimmune interactions. Trends Neurosci. 2019;42(1):43–55 Excellent review on the role of mast cells in neuroimmune interaction.

    Article  CAS  PubMed  Google Scholar 

  51. Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol. 2018;40(3):249–59.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Connor TM, O’Connell J, O’Brien DI, Goode T, Bredin CP, Shanahan F. The role of substance P in inflammatory disease. J Cell Physiol. 2004;201(2):167–80.

    Article  PubMed  CAS  Google Scholar 

  54. Chu HW, Kraft M, Krause JE, Rex MD, Martin RJ. Substance P and its receptor neurokinin 1 expression in asthmatic airways. J Allergy Clin Immunol. 2000;106(4):713–22.

    Article  CAS  PubMed  Google Scholar 

  55. Morteau O, Lu B, Gerard C, Gerard NP. Hemokinin 1 is a full agonist at the substance P receptor. Nat Immunol. 2001;2(12):1088.

    Article  CAS  PubMed  Google Scholar 

  56. Maggi CA. The effects of tachykinins on inflammatory and immune cells. Regul Pept. 1997;70(2–3):75–90.

    Article  CAS  PubMed  Google Scholar 

  57. Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev. 2014;94(1):265–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Recio S, Gascón P. Biological and pharmacological aspects of the NK1-receptor. Biomed Res Int. 2015;2015:495704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol. 2014;77(1):5–20.

    Article  PubMed  CAS  Google Scholar 

  60. Ramalho R, Soares R, Couto N, Moreira A. Tachykinin receptors antagonism for asthma: a systematic review. BMC Pulm Med. 2011;11:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boot JD, de Haas S, Tarasevych S, Roy C, Wang L, Amin D, et al. Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma. Am J Respir Crit Care Med. 2007;175(5):450–7.

    Article  CAS  PubMed  Google Scholar 

  62. Borsook D, Upadhyay J, Klimas M, Schwarz AJ, Coimbra A, Baumgartner R, et al. Decision-making using fMRI in clinical drug development: revisiting NK-1 receptor antagonists for pain. Drug Discov Today. 2012;17(17–18):964–73.

    Article  CAS  PubMed  Google Scholar 

  63. Lönndahl L, Holst M, Bradley M, Killasli H, Heilborn J, Hall MA, et al. Substance P antagonist aprepitant shows no additive effect compared with standardized topical treatment alone in patients with atopic dermatitis. Acta Derm Venereol. 2018;98(3):324–8.

    Article  PubMed  CAS  Google Scholar 

  64. Azimi E, Reddy VB, Shade K-TC, Anthony RM, Talbot S, Pereira PJS, et al. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight. 2016;1(16):e89362.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109–22.

    Article  PubMed  Google Scholar 

  66. Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(Suppl. 1):8–16.

    Article  CAS  PubMed  Google Scholar 

  67. Saunders SP, Moran T, Floudas A, Wurlod F, Kaszlikowska A, Salimi M, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol. 2016;137(2):482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Silverberg JI. Public health burden and epidemiology of atopic dermatitis. Dermatol Clin. 2017;35(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  69. Ring J, Zink A, Arents BWM, Seitz IA, Mensing U, Schielein MC, et al. Atopic eczema: burden of disease and individual suffering - results from a large EU study in adults. J Eur Acad Dermatol Venereol. 2019;33(7):1331–40.

    Article  CAS  PubMed  Google Scholar 

  70. Silverberg JI. Comorbidities and the impact of atopic dermatitis. Ann Allergy Asthma Immunol. 2019;123(2):144–51.

    Article  PubMed  Google Scholar 

  71. Ahn K, Kim BE, Kim J, Leung DY. Recent advances in atopic dermatitis. Curr Opin Immunol. 2020;66:14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Werfel T, Allam J-P, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336–49.

    Article  CAS  PubMed  Google Scholar 

  73. Ong PY. New insights in the pathogenesis of atopic dermatitis. Pediatr Res. 2014;75(1–2):171–5.

    Article  CAS  PubMed  Google Scholar 

  74. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 2018;26(6):484–97.

    Article  CAS  PubMed  Google Scholar 

  75. Park H-Y, Kim C-R, Huh I-S, Jung M-Y, Seo E-Y, Park J-H, et al. Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol. 2013;25(4):410–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Totté JEE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–95.

    Article  PubMed  Google Scholar 

  77. Bunikowski R, Mielke ME, Skarabis H, Worm M, Anagnostopoulos I, Kolde G, et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol. 2000;105(4):814–9.

    Article  CAS  PubMed  Google Scholar 

  78. Liu F-T, Goodarzi H, Chen H-Y. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol. 2011;41(3):298–310.

    Article  CAS  PubMed  Google Scholar 

  79. Forsythe P, Bienenstock J. The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem Immunol Allergy. 2012;98:196–221.

    Article  CAS  PubMed  Google Scholar 

  80. Järvikallio A, Harvima IT, Naukkarinen A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res. 2003;295(1):2–7.

    Article  PubMed  Google Scholar 

  81. Salomon J, Baran E. The role of selected neuropeptides in pathogenesis of atopic dermatitis. J Eur Acad Dermatol Venereol. 2008;22(2):223–8.

    CAS  PubMed  Google Scholar 

  82. Toyoda M, Nakamura M, Makino T, Fuh H, Kagoura M, Morohashi M. Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol. 2002;147(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  83. Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  84. Kawakami Y, Yumoto K, Kawakami T. An improved mouse model of atopic dermatitis and suppression of skin lesions by an inhibitor of Tec family kinases. Allergol Int. 2007;56(4):403–9.

    Article  CAS  PubMed  Google Scholar 

  85. Kawakami Y, Kawakami T. A mouse model of atopic dermatitis. Methods Mol Biol. 2015;1220:497–502.

    Article  CAS  PubMed  Google Scholar 

  86. Yang T-LB, Kim BS. Pruritus in allergy and immunology. J Allergy Clin Immunol. 2019;144(2):353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. • Gupta K, Harvima IT. Mast cell-neural interactions contribute to pain and itch. Immunol Rev. 2018;282(1):168–87 Informative review on the role of mast cell-nerve interaction in pain and itch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siiskonen H, Harvima I. Mast cells and sensory nerves contribute to neurogenic inflammation and pruritus in chronic skin inflammation. Front Cell Neurosci. 2019;13:422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. J Eur Acad Dermatol Venereol. 2020;34(2):239–50.

    Article  CAS  PubMed  Google Scholar 

  90. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Uehara M, Sawai T. A longitudinal study of contact sensitivity in patients with atopic dermatitis. Arch Dermatol. 1989;125(3):366–8.

    Article  CAS  PubMed  Google Scholar 

  92. Zheng Y, Che D, Peng B, Hao Y, Zhang X, He L, et al. All-trans-retinoic acid activated mast cells via Mas-related G-protein-coupled receptor-X2 in retinoid dermatitis. Contact Dermatitis. 2019;81(3):184–93.

    Article  CAS  PubMed  Google Scholar 

  93. Peng B, Che D, Hao Y, Zheng Y, Liu R, Qian Y, et al. Thimerosal induces skin pseudo-allergic reaction via Mas-related G-protein coupled receptor B2. J Dermatol Sci. 2019;95(3):99–106.

    Article  CAS  PubMed  Google Scholar 

  94. Brightling CE, Bradding P. The re-emergence of the mast cell as a pivotal cell in asthma pathogenesis. Curr Allergy Asthma Rep. 2005;5(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  95. Page S, Ammit AJ, Black JL, Armour CL. Human mast cell and airway smooth muscle cell interactions: implications for asthma. Am J Phys Lung Cell Mol Phys. 2001;281(6):L1313–23.

    CAS  Google Scholar 

  96. Robinson DS. The role of the mast cell in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle? J Allergy Clin Immunol. 2004;114(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  97. Andersson CK, Bergqvist A, Mori M, Mauad T, Bjermer L, Erjefält JS. Mast cell-associated alveolar inflammation in patients with atopic uncontrolled asthma. J Allergy Clin Immunol. 2011;127(4):905–912.e1–7.

    Article  CAS  PubMed  Google Scholar 

  98. Andersson C, Tufvesson E, Diamant Z, Bjermer L. Revisiting the role of the mast cell in asthma. Curr Opin Pulm Med. 2016;22(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  99. Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017;278(1):162–72.

    Article  CAS  PubMed  Google Scholar 

  100. Hallstrand TS, Henderson WR. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol. 2010;10(1):60–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. • Méndez-Enríquez E, Hallgren J. Mast cells and their progenitors in allergic asthma. Front Immunol. 2019;10:821 Excellent overview of the role of mast cells in allergic asthma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Undem BJ, Riccio MM, Weinreich D, Ellis JL, Myers AC. Neurophysiology of mast cell-nerve interactions in the airways. Int Arch Allergy Immunol. 1995;107(1–3):199–201.

    Article  CAS  PubMed  Google Scholar 

  103. Caubet J-C, Eigenmann PA. Allergic triggers in atopic dermatitis. Immunol Allergy Clin N Am. 2010;30(3):289–307.

    Article  Google Scholar 

  104. Singh M, Hays A. Indoor and outdoor allergies. Prim Care. 2016;43(3):451–63.

    Article  PubMed  Google Scholar 

  105. Tomaki M, Ichinose M, Miura M, Hirayama Y, Yamauchi H, Nakajima N, et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med. 1995;151(3 Pt 1):613–7.

    Article  CAS  PubMed  Google Scholar 

  106. Nieber K, Baumgarten CR, Rathsack R, Furkert J, Oehme P, Kunkel G. Substance P and β-endorphin-like immunoreactivity in lavage fluids of subjects with and without allergic asthma. J Allergy Clin Immunol. 1992;90(4, Part 1):646–52.

    Article  CAS  PubMed  Google Scholar 

  107. Heaney LG, Cross LJ, Stanford CF, Ennis M. Substance P induces histamine release from human pulmonary mast cells. Clin Exp Allergy. 1995;25(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  108. Kajiwara N, Sasaki T, Bradding P, Cruse G, Sagara H, Ohmori K, et al. Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol. 2010;125(5):1137–1145.e6.

    Article  CAS  PubMed  Google Scholar 

  109. •• Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald H-R. Human mast cell proteome reveals unique lineage, putative functions, and structural basis for cell ablation. Immunity. 2020;52(2):404–416.e5 Important study that showed MRGPRX2 is expressed in lung mast cells as opposed to previous observation that it was not.

    Article  CAS  PubMed  Google Scholar 

  110. Balzar S, Fajt ML, Comhair SAA, Erzurum SC, Bleecker E, Busse WW, et al. Mast cell phenotype, location, and activation in severe asthma. Data from the severe asthma research program. Am J Respir Crit Care Med. 2011;183(3):299–309.

    Article  PubMed  Google Scholar 

  111. Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, et al. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy. 2016;46(2):288–97.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang Y, Lu L, Furlonger C, Wu GE, Paige CJ. Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat Immunol. 2000;1(5):392–7.

    Article  CAS  PubMed  Google Scholar 

  113. Grassin-Delyle S, Naline E, Buenestado A, Risse P-A, Sage E, Advenier C, et al. Expression and function of human hemokinin-1 in human and Guinea pig airways. Respir Res. 2010;11:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Amin K, Janson C, Bystrom J. Role of eosinophil granulocytes in allergic airway inflammation endotypes. Scand J Immunol. 2016;84(2):75–85.

    Article  CAS  PubMed  Google Scholar 

  115. Doran E, Cai F, Holweg CTJ, Wong K, Brumm J, Arron JR. Interleukin-13 in asthma and other eosinophilic disorders. Front Med (Lausanne). 2017;4:139.

    Article  Google Scholar 

  116. Yasukawa A, Hosoki K, Toda M, Miyake Y, Matsushima Y, Matsumoto T, et al. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells. PLoS One. 2013;8(5):e64281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Duits LA, Nibbering PH, van Strijen E, Vos JB, Mannesse-Lazeroms SPG, van Sterkenburg MAJA, et al. Rhinovirus increases human beta-defensin-2 and -3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol Med Microbiol. 2003;38(1):59–64.

  118. Proud D, Sanders SP, Wiehler S. Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J Immunol. 2004;172(7):4637–45.

  119. •• Alkanfari I, Gupta K, Jahan T, Ali H. Naturally occurring missense MRGPRX2 variants display loss of function phenotype for mast cell degranulation in response to substance P, hemokinin-1, human β-defensin-3, and icatibant. J Immunol. 2018;201(2):343–9 This study identified naturally occurring MRGPRX2 variants with a loss of function phenotype in response to SP and HK-1 induced mast cell degranulation.

    Article  CAS  PubMed  Google Scholar 

  120. Lansu K, Karpiak J, Liu J, Huang X-P, McCorvy JD, Kroeze WK, et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat Chem Biol. 2017;13(5):529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Reddy VB, Graham TA, Azimi E, Lerner EA. A single amino acid in MRGPRX2 necessary for binding and activation by pruritogens. J Allergy Clin Immunol. 2017;140(6):1726–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature. 2016;536(7617):484–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. •• Chompunud Na Ayudhya C, Roy S, Alkanfari I, Ganguly A, Ali H. Identification of gain and loss of function missense variants in MRGPRX2’s transmembrane and intracellular domains for mast cell activation by substance P. Int J Mol Sci. 2019;20(21):5247. This study identified both gain and loss of function variants of MRGPRX2 for SP induced mast cell activation with prospective direct clinical relevance.

  124. Ali H. Mas-related G protein coupled receptor-X2: a potential new target for modulating mast cell-mediated allergic and inflammatory diseases. J Immunobiol. 2016;1(4):115.

  125. Ogasawara H, Furuno M, Edamura K, Noguchi M. Novel MRGPRX2 antagonists inhibit IgE-independent activation of human umbilical cord blood-derived mast cells. J Leukoc Biol. 2019;106(5):1069–77.

    Article  CAS  PubMed  Google Scholar 

  126. Burton OT, Stranks AJ, Tamayo JM, Koleoglou KJ, Schwartz LB, Oettgen HC. A humanized mouse model of anaphylactic peanut allergy. J Allergy Clin Immunol. 2017;139(1):314–322.e9.

    Article  CAS  PubMed  Google Scholar 

  127. Bryce PJ, Falahati R, Kenney LL, Leung J, Bebbington C, Tomasevic N, et al. Humanized mouse model of mast cell–mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol. 2016;138(3):769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ito R, Maruoka S, Gon Y, Katano I, Takahashi T, Ito M, et al. Recent advances in allergy research using humanized mice. Int J Mol Sci. 2019;20(11):2740.

    Article  CAS  PubMed Central  Google Scholar 

  129. • Mencarelli A, Gunawan M, Yong KSM, Bist P, Tan WWS, Tan SY, et al. A humanized mouse model to study mast cells mediated cutaneous adverse drug reactions. J Leukoc Biol. 2020;107(5):797–807 This study established a humanized mice model expressing MRGPRX2 to address species-specific limitation in in vivo studies.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hydar Ali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapaliya, M., Chompunud Na Ayudhya, C., Amponnawarat, A. et al. Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Curr Allergy Asthma Rep 21, 3 (2021). https://doi.org/10.1007/s11882-020-00979-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00979-5

Keywords

Navigation