Skip to main content

Advertisement

Log in

Th17/IL-17 Axis Regulated by Airway Microbes Get Involved in the Development of Asthma

  • Asthma (V Ortega, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Bronchial asthma is a common respiratory disease induced by immune imbalance, characterized by chronic non-specific airway inflammation and airway hyperresponsiveness (AHR). Many factors induce asthma, among which respiratory infection is the important cause. In this review, we discuss how respiratory microbes participate in the occurrence and progression of asthma via Th17/IL-17 axis.

Recent Findings

Pathogenesis of asthma has been considered as closely related to the imbalance in number and function of Th1/Th2 in the CD4+ T lymphocyte subsets. Recent studies have shown that Th17 cell and its secretory IL-17 also play an important role in AHR. Respiratory virus, bacteria, fungi, and other respiratory microbial infections can directly or indirectly induce the differentiation of Th17 cell and the production of related cytokines to induce AHR.

Summary

Respiratory microbial infection can affect the TH17/IL-17A axis through a variety of mechanisms, thereby promoting the occurrence and development of asthma, and these specific mechanisms may provide new effective therapeutic ideas for asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Bush A, Fleming L. Diagnosis and management of asthma in children. BMJ. 22 2015;350:h996. https://doi.org/10.1136/bmj.h996.

  2. Hargreave FE, Nair P. The definition and diagnosis of asthma. Clin Exp Allergy. 2009;39(11):1652–8. https://doi.org/10.1111/j.1365-2222.2009.03321.x.

    Article  CAS  PubMed  Google Scholar 

  3. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2014;16(1):45–56. https://doi.org/10.1038/ni.3049.

    Article  CAS  Google Scholar 

  4. Masoli M, Fabian D, Holt S, Beasley R, Program GIfA. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78. https://doi.org/10.1111/j.1398-9995.2004.00526.x.

    Article  PubMed  Google Scholar 

  5. Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65. https://doi.org/10.1038/nri3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28(4):0):454–67. https://doi.org/10.1016/j.immuni.2008.03.004.

  7. Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008;178(10):1023–32. https://doi.org/10.1164/rccm.200801-086OC.

    Article  CAS  PubMed  Google Scholar 

  8. Azizi G, Jadidi-Niaragh F, Mirshafiey A. Th17 cells in immunopathogenesis and treatment of rheumatoid arthritis. Int J Rheum Dis. 2013;16(3):243–53. https://doi.org/10.1111/1756-185X.12132.

    Article  CAS  PubMed  Google Scholar 

  9. Wen Z, Xu L, Xu W, Xiong S. Detection of dynamic frequencies of Th17 cells and their associations with clinical parameters in patients with systemic lupus erythematosus receiving standard therapy. Clin Rheumatol. 2014;33(10):1451–8. https://doi.org/10.1007/s10067-014-2656-5.

    Article  PubMed  Google Scholar 

  10. Zaba LC, Fuentesduculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol. 2009;129(1):79–88. https://doi.org/10.1038/jid.2008.194.

  11. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33. https://doi.org/10.1016/j.cell.2006.07.035.

    Article  CAS  PubMed  Google Scholar 

  12. Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O'Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010;21(6):425–34. https://doi.org/10.1016/j.cytogfr.2010.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453(7192):236–40. https://doi.org/10.1038/nature06878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang XXO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28(1):29–39. https://doi.org/10.1016/j.immuni.2007.11.016.

    Article  CAS  PubMed  Google Scholar 

  15. Song XY, Gao HC, Qian YC. Th17 differentiation and their pro-inflammation function. Adv Exp Med Biol. 2014;841:99–151. https://doi.org/10.1007/978-94-017-9487-9_5.

    Article  CAS  PubMed  Google Scholar 

  16. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76. https://doi.org/10.1038/nrd3794.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7. https://doi.org/10.1038/ni1497.

    Article  CAS  PubMed  Google Scholar 

  18. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol. 2006;176(9):5652–61. https://doi.org/10.4049/jimmunol.176.9.5652.

    Article  CAS  PubMed  Google Scholar 

  19. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10(3):314–24. https://doi.org/10.1038/ni.1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith JA, Colbert RA. Review: the interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheum. 2014;66(2):231–41. https://doi.org/10.1002/art.38291.

    Article  CAS  Google Scholar 

  21. Agache I, Ciobanu C, Agache C, Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med. 2010;104(8):1131–7. https://doi.org/10.1016/j.rmed.2010.02.018.

    Article  PubMed  Google Scholar 

  22. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol. 2001;108(3):430–8. https://doi.org/10.1067/mai.2001.117929.

    Article  CAS  PubMed  Google Scholar 

  23. Bullens DM, Truyen E, Coteur L, Dilissen E, Hellings PW, Dupont LJ, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7:135. https://doi.org/10.1186/1465-9921-7-135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sigurs N, Gustafsson PM, Bjarnason R, Lundberg F, Schmidt S, Sigurbergsson F, et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am J Respir Crit Care Med. 2005;171(2):137–41. https://doi.org/10.1164/rccm.200406-730OC.

    Article  PubMed  Google Scholar 

  25. Qin L, Hu CP, Feng JT, Xia Q. Activation of lymphocytes induced by bronchial epithelial cells with prolonged RSV infection. PLoS One. 2011;6(12):e27113. https://doi.org/10.1371/journal.pone.0027113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krishnamoorthy N, Khare A, Oriss TB, Raundhal M, Morse C, Yarlagadda M, et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat Med. 2012;18(10):1525–30. https://doi.org/10.1038/nm.2896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Kong L, Luo Q, Li B, Wu J, Liu B, et al. Dual effects of respiratory syncytial virus infections on airway inflammation by regulation of Th17/Treg responses in ovalbumin-challenged mice. Inflammation. 2014;37(6):1984–2005. https://doi.org/10.1007/s10753-014-9931-0.

    Article  CAS  PubMed  Google Scholar 

  28. Feng J, Hu Y, Song Z, Liu Y, Guo X, Jie Z. Interleukin-23 facilitates Th1 and Th2 cell differentiation in vitro following respiratory syncytial virus infection. J Med Virol. 2015;87(4):708–15. https://doi.org/10.1002/jmv.24126.

    Article  CAS  PubMed  Google Scholar 

  29. Feng J, Chen J, Wang S, Jie Z. Role and mechanism of interleukin-23 in the differentiation of Th1, Th2 and Th17 cells induced by respiratory syncytial virus infection. Microbes Infect. 2017;12(5):279–86. https://doi.org/10.3969/j.issn.1673-6184.2017.05.005.

    Article  Google Scholar 

  30. Wang G, Qian P, Jackson FR, Qian G, Wu G. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. Int J Biochem Cell Biol. 2008;40(3):461–70. https://doi.org/10.1016/j.biocel.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  31. Qin L, Tan YR, Hu CP, Liu XA, He RX. Leptin is oversecreted by respiratory syncytial virus-infected bronchial epithelial cells and regulates Th2 and Th17 cell differentiation. Int Arch Allergy Immunol. 2015;167(1):65–71. https://doi.org/10.1159/000436966.

    Article  CAS  PubMed  Google Scholar 

  32. Mukherjee S, Allen RM, Lukacs NW, Kunkel SL, Carson WF. STAT3-mediated IL-17 production by postseptic T cells exacerbates viral immunopathology of the lung. Shock. 2012;38(5):515–23. https://doi.org/10.1097/SHK.0b013e31826f862c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kong X, San Juan H, Kumar M, Behera AK, Mohapatra A, Hellermann GR, et al. Respiratory syncytial virus infection activates STAT signaling in human epithelial cells. Biochem Biophys Res Commun. 2003;306(2):616–22. https://doi.org/10.1016/s0006-291x(03)01008-8.

    Article  CAS  PubMed  Google Scholar 

  34. Feng Q, Su Z, Song S, Chiu H, Zhang B, Yi L, et al. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation. Int J Mol Med. 2016;38(3):812–22. https://doi.org/10.3892/ijmm.2016.2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bera MM, Lu B, Martin TR, Cui S, Rhein LM, Gerard C, et al. Th17 cytokines are critical for respiratory syncytial virus-associated airway hyperreponsiveness through regulation by complement C3a and tachykinins. J Immunol. 2011;187(8):4245–55. https://doi.org/10.4049/jimmunol.1101789.

    Article  CAS  PubMed  Google Scholar 

  36. Shi T, He Y, Sun W, Wu Y, Li L, Jie Z, et al. Respiratory syncytial virus infection compromises asthma tolerance by recruiting interleukin-17A-producing cells via CCR6-CCL20 signaling. Mol Immunol. 2017;88:45–57. https://doi.org/10.1016/j.molimm.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  37. Caixia L, Yang X, Yurong T, Xiaoqun Q. Involvement of epigenetic modification in epithelial immune responses during respiratory syncytial virus infection. Microb Pathog. 2019;130:186–9. https://doi.org/10.1016/j.micpath.2019.03.019.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Wu G, Qin X, Ma Q, Zhou Y, Liu S, et al. Expression of nodal on bronchial epithelial cells influenced by lung microbes through DNA methylation modulates the differentiation of T-helper cells. Cell Physiol Biochem. 2015;37(5):2012–22. https://doi.org/10.1159/000438561.

    Article  CAS  PubMed  Google Scholar 

  39. Qin L, Qiu K, Hu C, Wang L, Wu G, Tan Y. Respiratory syncytial virus promoted the differentiation of Th17 cells in airway microenvironment through activation of Notch-1/Delta3. J Med Microbiol. 2019;68(4):649–56. https://doi.org/10.1099/jmm.0.000959.

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee S, Lindell DM, Berlin AA, Morris SB, Shanley TP, Hershenson MB, et al. IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am J Pathol. 2011;179(1):248–58. https://doi.org/10.1016/j.ajpath.2011.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kallal LE, Hartigan AJ, Hogaboam CM, Schaller MA, Lukacs NW. Inefficient lymph node sensitization during respiratory viral infection promotes IL-17-mediated lung pathology. J Immunol. 2010;185(7):4137–47. https://doi.org/10.4049/jimmunol.1000677.

    Article  CAS  PubMed  Google Scholar 

  42. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357(15):1487–95. https://doi.org/10.1056/NEJMoa052632.

    Article  CAS  PubMed  Google Scholar 

  43. Ricardo I, De Jesús R, Spitters C, et al. Chlamydia pneumoniae, and mycoplasma pneumoniae: are they related to severe asthma in childhood? J Asthma. 2016;53:618–21. https://doi.org/10.3109/02770903.2015.1116085.

    Article  CAS  Google Scholar 

  44. Yang X, Wang Y, Zhao S, Wang R, Wang C. Long-term exposure to low-dose Haemophilus influenzae during allergic airway disease drives a steroid-resistant neutrophilic inflammation and promotes airway remodeling. Oncotarget. 2018;9(38):24898–913. https://doi.org/10.18632/oncotarget.24653.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Essilfie AT, Simpson JL, Horvat JC, Preston JA, Dunkley ML, Foster PS, et al. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease. PLoS Pathog. 2011;7(10):e1002244. https://doi.org/10.1371/journal.ppat.1002244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Yang B, Liu R, Yang T, Jiang X, Zhang L, Wang L, et al. Neonatal Streptococcus pneumoniae infection may aggravate adulthood allergic airways disease in association with IL-17A. PLoS One. 2015;10(3):e0123010. https://doi.org/10.1371/journal.pone.0123010The study shows that NeonatalStreptococcus pneumoniaeinfection may promote the development of adulthood asthma in association with increased IL-17A production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng X, Wu Y, Kong X, Chen Y, Tian Y, Li Q, et al. Neonatal Streptococcus pneumoniae pneumonia induces an aberrant airway smooth muscle phenotype and AHR in mice model. Biomed Res Int. 2019;2019:1948519. https://doi.org/10.1155/2019/1948519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Alnahas S, Hagner S, Raifer H, Kilic A, Gasteiger G, Mutters R, et al. IL-17 and TNF-alpha are key mediators of Moraxella catarrhalis triggered exacerbation of allergic airway inflammation. Front Immunol. 2017;(8):1562. https://doi.org/10.3389/fimmu.2017.01562The data demonstrates an essential role for TNF-alpha and IL-17 in Moraxella catarrhalis infection-triggered exacerbation of allergic airway inflammation.

  49. Wood PR, Hill VL, Burks ML, Peters JI, Singh H, Kannan TR, et al. Mycoplasma pneumoniae in children with acute and refractory asthma. Ann Allergy Asthma Immunol. 2013;110(5):328–34 e1. https://doi.org/10.1016/j.anai.2013.01.022.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kassisse E, Garcia H, Prada L, Salazar I, Kassisse J. Prevalence of mycoplasma pneumoniae infection in pediatric patients with acute asthma exacerbation. Arch Argent Pediatr. 2018;116(3):179–85. https://doi.org/10.5546/aap.2018.eng.179.

    Article  PubMed  Google Scholar 

  51. Martin RJ, Chu HW, Honour JM, Harbeck RJ. Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infection in a murine model. Am J Respir Cell Mol Biol. 2001;24(5):577–82. https://doi.org/10.1165/ajrcmb.24.5.4315.

    Article  CAS  PubMed  Google Scholar 

  52. Chu HW, Honour JM, Rawlinson CA, Harbeck RJ, Martin RJ. Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice. Infect Immun. 2003;71(3):1520–6. https://doi.org/10.1128/iai.71.3.1520-1526.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurata S, Osaki T, Yonezawa H, Arae K, Taguchi H, Kamiya S. Role of IL-17A and IL-10 in the antigen induced inflammation model by Mycoplasma pneumoniae. BMC Microbiol. 2014;14:156. https://doi.org/10.1186/1471-2180-14-156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang ZH, Li XM, Wang YS, Guo ZY. Changes in the levels of interleukin-17 between atopic and non-atopic children with Mycoplasma pneumoniae pneumonia. Inflammation. 2016;39(6):1871–5. https://doi.org/10.1007/s10753-016-0422-3.

    Article  CAS  PubMed  Google Scholar 

  55. Kurai D, Nakagaki K, Wada H, Saraya T, Kamiya S, Fujioka Y, et al. Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: implication for mycoplasmal pneumonia. Inflammation. 2013;36(2):285–93. https://doi.org/10.1007/s10753-012-9545-3.

    Article  PubMed  Google Scholar 

  56. Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect. 2007;9(1):78–86. https://doi.org/10.1016/j.micinf.2006.10.012.

    Article  CAS  PubMed  Google Scholar 

  57. Gavino AC, Nahmod K, Bharadwaj U, Makedonas G, Tweardy DJ. STAT3 inhibition prevents lung inflammation, remodeling, and accumulation of Th2 and Th17 cells in a murine asthma model. Allergy. 2016;71(12):1684–92. https://doi.org/10.1111/all.12937.

    Article  CAS  PubMed  Google Scholar 

  58. Crother TR, Schroder NW, Karlin J, Chen S, Shimada K, Slepenkin A, et al. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells. PLoS One. 2011;6(6):e20784. https://doi.org/10.1371/journal.pone.0020784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang X, Gao L, Lei L, Zhong Y, Dube P, Berton MT, et al. A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen chlamydia muridarum. J Immunol. 2009;183(2):1291–300. https://doi.org/10.4049/jimmunol.0803075.

    Article  CAS  PubMed  Google Scholar 

  60. Mosolygo T, Korcsik J, Balogh EP, Faludi I, Virok DP, Endresz V, et al. Chlamydophila pneumoniae re-infection triggers the production of IL-17A and IL-17E, important regulators of airway inflammation. Inflamm Res. 2013;62(5):451–60. https://doi.org/10.1007/s00011-013-0596-1.

    Article  CAS  PubMed  Google Scholar 

  61. Valladao AC, Frevert CW, Koch LK, Campbell DJ, Ziegler SF. STAT6 regulates the development of eosinophilic versus neutrophilic asthma in response to Alternaria alternata. J Immunol. 2016;197(12):4541–51. https://doi.org/10.4049/jimmunol.1600007.

    Article  CAS  PubMed  Google Scholar 

  62. •• Zhang Z, Biagini Myers JM, Brandt EB, Ryan PH, Lindsey M, Mintz-Cole RA, et al. Beta-glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses. J Allergy Clin Immunol. 2017;139(1):54–65 e8. https://doi.org/10.1016/j.jaci.2016.02.031The data demonstrates that fungi are potent immunomodulators and have powerful effects on asthma independent of their potential to act as antigens.

    Article  CAS  PubMed  Google Scholar 

  63. Mintz-Cole RA, Brandt EB, Bass SA, Gibson AM, Reponen T, Khurana Hershey GK. Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides. J Allergy Clin Immunol. 2013;132(1):159–69. https://doi.org/10.1016/j.jaci.2013.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patel D, Gaikwad S, Challagundla N, Nivsarkar M, Agrawal-Rajput R. Spleen tyrosine kinase inhibition ameliorates airway inflammation through modulation of NLRP3 inflammosome and Th17/Treg axis. Int Immunopharmacol. 2018;54:375–84. https://doi.org/10.1016/j.intimp.2017.11.026.

    Article  CAS  PubMed  Google Scholar 

  65. Preston JA, Thorburn AN, Starkey MR, Beckett EL, Horvat JC, Wade MA, et al. Streptococcus pneumoniae infection suppresses allergic airways disease by inducing regulatory T-cells. Eur Respir J. 2011;37(1):53–64. https://doi.org/10.1183/09031936.00049510.

    Article  CAS  PubMed  Google Scholar 

  66. Thorburn AN, Foster PS, Gibson PG, Hansbro PM. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. J Immunol. 2012;188(9):4611–20. https://doi.org/10.4049/jimmunol.1101299.

    Article  CAS  PubMed  Google Scholar 

  67. Thorburn AN, Brown AC, Nair PM, Chevalier N, Foster PS, Gibson PG, et al. Pneumococcal components induce regulatory T cells that attenuate the development of allergic airways disease by deviating and suppressing the immune response to allergen. J Immunol. 2013;191(8):4112–20. https://doi.org/10.4049/jimmunol.1201232.

    Article  CAS  PubMed  Google Scholar 

  68. •• Tarancon R, Uranga S, Martin C, Aguilo N. Mycobacterium tuberculosis infection prevents asthma and abrogates eosinophilopoiesis in an experimental model. Allergy. 2019. https://doi.org/10.1111/all.13923The study shows that Mycobacterium tuberculosis can inhibit the occurrence of asthma to a certain extent.

  69. Kim HY, Kang HK, Cho J, Jung ID, Yoon GY, Lee MG, et al. Heat shock protein X purified from Mycobacterium tuberculosis enhances the efficacy of dendritic cells-based immunotherapy for the treatment of allergic asthma. BMB Rep. 2015;48(3):178–83. https://doi.org/10.5483/bmbrep.2015.48.3.257.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Han ER, Choi IS, Choi HG, Kim HJ. Therapeutic effects of mycobacterial secretory proteins against established asthma in BALB/c mice. Allergy Asthma Immunol Res. 2012;4(4):214–21. https://doi.org/10.4168/aair.2012.4.4.214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsujimura Y, Inada H, Yoneda M, Fujita T, Matsuo K, Yasutomi Y. Effects of mycobacteria major secretion protein, Ag85B, on allergic inflammation in the lung. PLoS One. 2014;9(9):e106807. https://doi.org/10.1371/journal.pone.0106807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan Y, Liu H, Yang H, Wang L, Qin X. An inactivated Pseudomonas aeruginosa medicament inhibits airway allergic inflammation and improves epithelial functions. J Physiol Sci. 2013;63(1):63–9. https://doi.org/10.1007/s12576-012-0231-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grant 31670121 and 31771277 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiang Tang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Asthma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Tan, Y., Bajinka, O. et al. Th17/IL-17 Axis Regulated by Airway Microbes Get Involved in the Development of Asthma. Curr Allergy Asthma Rep 20, 11 (2020). https://doi.org/10.1007/s11882-020-00903-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00903-x

Keywords

Navigation