Skip to main content

Advertisement

Log in

Mechanisms Driving Gender Differences in Asthma

  • Basic and Applied Science (I Lewkowich, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Many phenotypes of asthma exist, ranging from mild asthma with onset during childhood to severe asthma with later onset, making asthma a broad disease with different pathologies. A gender disparity exists in asthma prevalence. As adults, women have an increased asthma prevalence compared to men. Further, women are more likely to have severe asthma and a later onset of asthma compared to men. Here, we review clinical and animal studies that have defined the role of sex hormones in airway inflammation, smooth muscle contraction, mucus production, and airway mechanics associated with asthma pathogenesis.

Recent Findings

Clinical evidence shows that increased asthma symptoms occur in females starting at puberty compared to those in boys. However, after puberty, the role for sex hormones in regulating asthma symptoms during menstruation, pregnancy, and menopause is not as clear. Animal studies have shown that estrogen increases and testosterone decreases Th2-mediated airway inflammation, and that females have increased IL-17A-mediated airway inflammation compared to males. Further, females had increased DC and Mϕ function compared to males. However, the mechanisms driving the types of allergic inflammation are not fully elucidated.

Summary

Overall, ovarian hormones increased and testosterone decreased airway inflammation in asthma, but the mechanisms remain unclear. Delineating these pathways using animal models as well as women and men with various phenotypes of asthma will help determine if women with asthma should take (or avoid) hormonal contraceptives as well as predict changes in asthma symptoms during life phases, including pregnancy and menopause, when sex hormones are dramatically changing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AAMϕ:

alveolar macrophages

AHR:

airway hyperresponsiveness

BAL:

broncheoalveolar lavage

DC:

dendritic cells

FeNO:

forced nitric oxide

HDM:

house dust mite

HRT:

hormone replacement therapy

Mϕ:

macrophages

OVA:

ovalbumin

SARP:

severe asthma research program

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prevention of asthma. Global initiative for asthma (GINA). http://www.ginasthma.org/. 2014.

  2. Centers for Disease Control and Prevention, Vital Signs, May 2011.2013.

  3. •• Wu W, Bleecker E, Moore W, Busse WW, Castro M, Chung KF, et al. Unsupervised phenotyping of severe asthma research program participants using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280–8. This study was critical in identifying different phenotypes of asthma and determining that women had increased prevalence in the more severe phenotypes of asthma

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zein JG, Erzurum SC. Asthma is different in women. Curr Allergy Asthma Rep. 2015;15(6):28.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kynyk JA, Mastronarde JG, McCallister JW. Asthma, the sex difference. Curr Opin Pulm Med. 2011;17(1):6–11.

    Article  PubMed  Google Scholar 

  6. Moorman JE, Zahran H, Truman BI, Molla MT. Current asthma prevalence—United States, 2006–2008. MMWR Surveill Summ. 2011;60(Suppl):84–6.

    Google Scholar 

  7. Chen Y, Stewart P, Johansen H, McRae L, Taylor G. Sex difference in hospitalization due to asthma in relation to age. J Clin Epidemiol. 2003;56(2):180–7.

    Article  PubMed  Google Scholar 

  8. Hyndman SJ, Williams DR, Merrill SL, Lipscombe JM, Palmer CR. Rates of admission to hospital for asthma. BMJ. 1994;308(6944):1596–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skobeloff EM, Spivey WH, St Clair SS, Schoffstall JM. The influence of age and sex on asthma admissions. JAMA. 1992;268(24):3437–40.

    Article  CAS  PubMed  Google Scholar 

  10. Troisi RJ, Speizer FE, Willett WC, Trichopoulos D, Rosner B. Menopause, postmenopausal estrogen preparations, and the risk of adult-onset asthma. A prospective cohort study. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1183–8.

    Article  CAS  PubMed  Google Scholar 

  11. Borish L, Chipps B, Deniz Y, Gujrathi S, Zheng B, Dolan CM, et al. Total serum IgE levels in a large cohort of patients with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol. 2005;95(3):247–53.

    Article  PubMed  Google Scholar 

  12. Genuneit J. Sex-specific development of asthma differs between farm and nonfarm children: a cohort study. Am J Respir Crit Care Med. 2014;190(5):588–90.

    Article  PubMed  Google Scholar 

  13. Pagtakhan RD, Bjelland JC, Landau LI, Loughlin G, Kaltenborn W, Seeley G, et al. Sex differences in growth patterns of the airways and lung parenchyma in children. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(5):1204–10.

    CAS  PubMed  Google Scholar 

  14. Vink NM, Postma DS, Schouten JP, Rosmalen JG, Boezen HM. Gender differences in asthma development and remission during transition through puberty: the tracking adolescents’ individual lives survey (trails) study. J Allergy Clin Immunol. 2010;126(3):498–504.

    Article  PubMed  Google Scholar 

  15. • Fu L, Freishtat RJ, Gordish-Dressman H, Teach SJ, Resca L, Hoffman EP, et al. Natural progression of childhood asthma symptoms and strong influence of sex and puberty. Ann Am Thorac Soc. 2014;11(6):939–44. This study showed that asthma symptoms increased as Tanner stages of puberty increased in girls

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castro-Rodriguez JA. A new childhood asthma phenotype: obese with early menarche. Paediatr Respir Rev. 2016;18:85–9.

    PubMed  Google Scholar 

  17. Juniper EF, Kline PA, Roberts RS, Hargreave FE, Daniel EE. Airway responsiveness to methacholine during the natural menstrual cycle and the effect of oral contraceptives. Am Rev Respir Dis. 1987;135(5):1039–42.

    CAS  PubMed  Google Scholar 

  18. Agarwal AK, Shah A. Menstrual-linked asthma. J Asthma. 1997;34(6):539–45.

    Article  CAS  PubMed  Google Scholar 

  19. Pauli BD, Reid RL, Munt PW, Wigle RD, Forkert L. Influence of the menstrual cycle on airway function in asthmatic and normal subjects. Am Rev Respir Dis. 1989;140(2):358–62.

    Article  CAS  PubMed  Google Scholar 

  20. Shames RS, Heilbron DC, Janson SL, Kishiyama JL, Au DS, Adelman DC. Clinical differences among women with and without self-reported perimenstrual asthma. Ann Allergy Asthma Immunol. 1998;81(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  21. Brenner BE, Holmes TM, Mazal B, Camargo Jr CA. Relation between phase of the menstrual cycle and asthma presentations in the emergency department. Thorax. 2005;60(10):806–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chandler MH, Schuldheisz S, Phillips BA, Muse KN. Premenstrual asthma: the effect of estrogen on symptoms, pulmonary function, and beta 2-receptors. Pharmacotherapy. 1997;17(2):224–34.

    CAS  PubMed  Google Scholar 

  23. Rao CK, Moore CG, Bleecker E, Busse WW, Calhoun W, Castro M, et al. Characteristics of perimenstrual asthma and its relation to asthma severity and control: data from the severe asthma research program. Chest. 2013;143(4):984–92.

    Article  PubMed  Google Scholar 

  24. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (feno) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oguzulgen IK, Turktas H, Erbas D. Airway inflammation in premenstrual asthma. J Asthma. 2002;39(6):517–22.

    Article  PubMed  Google Scholar 

  26. Zimmerman JL, Woodruff PG, Clark S, Camargo CA. Relation between phase of menstrual cycle and emergency department visits for acute asthma. Am J Respir Crit Care Med. 2000;162(2 Pt 1):512–5.

    Article  CAS  PubMed  Google Scholar 

  27. Macsali F, Real FG, Omenaas ER, Bjorge L, Janson C, Franklin K, et al. Oral contraception, body mass index, and asthma: a cross-sectional Nordic-Baltic population survey. J Allergy Clin Immunol. 2009;123(2):391–7.

    Article  PubMed  Google Scholar 

  28. Jenkins MA, Dharmage SC, Flander LB, Douglass JA, Ugoni AM, Carlin JB, et al. Parity and decreased use of oral contraceptives as predictors of asthma in young women. Clin Exp Allergy. 2006;36(5):609–13.

    Article  CAS  PubMed  Google Scholar 

  29. Erkocoglu M, Kaya A, Azkur D, Ozyer S, Ozcan C, Besli M, et al. The effect of oral contraceptives on current wheezing in young women. Allergol Immunopathol (Madr). 2013;41(3):169–75.

    Article  CAS  Google Scholar 

  30. Salam MT, Wenten M, Gilliland FD. Endogenous and exogenous sex steroid hormones and asthma and wheeze in young women. J Allergy Clin Immunol. 2006;117(5):1001–7.

    Article  CAS  PubMed  Google Scholar 

  31. • Dratva J, Schindler C, Curjuric I, Stolz D, Macsali F, Gomez FR, et al. Perimenstrual increase in bronchial hyperreactivity in premenopausal women: results from the population-based SAPALDIA 2 cohort. J Allergy Clin Immunol. 2010;125(4):823–9. This study conducted methacholine challenges on the day of menstruation for over 500 women taking or not taking oral contractives to determine cyclic variations in bronchial hyperractivity. Authors determine systematic variation in BHR during the menstrual cycle and that oral contraceptives had a protective effect

    Article  PubMed  Google Scholar 

  32. Murphy VE, Gibson PG. Premenstrual asthma: prevalence, cycle-to-cycle variability and relationship to oral contraceptive use and menstrual symptoms. J Asthma. 2008;45(8):696–704.

    Article  PubMed  Google Scholar 

  33. Schatz M, Harden K, Forsythe A, Chilingar L, Hoffman C, Sperling W, et al. The course of asthma during pregnancy, post partum, and with successive pregnancies: a prospective analysis. J Allergy Clin Immunol. 1988;81(3):509–17.

    Article  CAS  PubMed  Google Scholar 

  34. Stenius-Aarniala B, Piirila P, Teramo K. Asthma and pregnancy: a prospective study of 198 pregnancies. Thorax. 1988;43(1):12–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schatz M. Interrelationships between asthma and pregnancy: a literature review. J Allergy Clin Immunol. 1999;103(2 Pt 2):S330–6.

    Article  CAS  PubMed  Google Scholar 

  36. National Heart L, Blood I, National Asthma E, Prevention Program A, Pregnancy WG. Naepp expert panel report: managing asthma during pregnancy: recommendations for pharmacologic treatment—2004 update. J Allergy Clin Immunol. 2005;115(1):34–46.

    Article  Google Scholar 

  37. GINA—Global strategy for asthma management and prevention. 2014.

  38. Murphy VE, Clifton VL, Gibson PG. Asthma exacerbations during pregnancy: incidence and association with adverse pregnancy outcomes. Thorax. 2006;61(2):169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim A, Stewart K, Konig K, George J. Systematic review of the safety of regular preventive asthma medications during pregnancy. Ann Pharmacother. 2011;45(7–8):931–45.

    Article  CAS  PubMed  Google Scholar 

  40. Gomez Real F, Svanes C, Bjornsson EH, Franklin KA, Gislason D, Gislason T, et al. Hormone replacement therapy, body mass index and asthma in perimenopausal women: a cross sectional survey. Thorax. 2006;61(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  41. Real FG, Svanes C, Omenaas ER, Anto JM, Plana E, Jarvis D, et al. Lung function, respiratory symptoms, and the menopausal transition. J Allergy Clin Immunol. 2008;121(1):72–80. e3

    Article  PubMed  Google Scholar 

  42. Balzano G, Fuschillo S, De Angelis E, Gaudiosi C, Mancini A, Caputi M. Persistent airway inflammation and high exacerbation rate in asthma that starts at menopause. Monaldi Arch Chest Dis. 2007;67(3):135–41.

    CAS  PubMed  Google Scholar 

  43. Triebner K, Johannessen A, Puggini L, Benediktsdottir B, Bertelsen RJ, Bifulco E, et al. Menopause as a predictor of new-onset asthma: a longitudinal northern european population study. J Allergy Clin Immunol. 2016;137(1):50–7. e6

    Article  PubMed  Google Scholar 

  44. Triebner K, Matulonga B, Johannessen A, Suske S, Benediktsdottir B, Demoly P, et al. Menopause is associated with accelerated lung function decline. Am J Respir Crit Care Med 2016.

  45. Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of severe asthma. Annual Review of Pathology: Mechanisms of Disease. 2015;10:511–45.

    Article  CAS  Google Scholar 

  46. Manni ML, Trudeau JB, Scheller EV, Mandalapu S, Elloso MM, Kolls JK, et al. The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol. 2014;7(5):1186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135(2):299–310.

    Article  PubMed  Google Scholar 

  48. Fahy JV. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc. 2009;6(3):256–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ray A, Raundhal M, Oriss TB, Ray P, Wenzel SE. Current concepts of severe asthma. J Clin Invest. 2016;126(7):2394–403.

    Article  PubMed  Google Scholar 

  50. Hayashi T, Adachi Y, Hasegawa K, Morimoto M. Less sensitivity for late airway inflammation in males than females in BALB/c mice. ScandJImmunol. 2003;57(6):562–7.

    CAS  Google Scholar 

  51. Takeda M, Tanabe M, Ito W, Ueki S, Konnno Y, Chihara M, et al. Gender difference in allergic airway remodelling and immunoglobulin production in mouse model of asthma. Respirology. 2013;18(5):797–806.

    Article  PubMed  Google Scholar 

  52. • Blacquiere MJ, Hylkema MN, Postma DS, Geerlings M, Timens W, Melgert BN. Airway inflammation and remodeling in two mouse models of asthma: comparison of males and females. Int Arch Allergy Immunol. 2010;153(2):173–81. This study showed that female mice had increased OVA or HDM-induced airway associated with severe asthma and that airway remodeling is not associated with increased asthma severity in mice

    Article  CAS  PubMed  Google Scholar 

  53. •• Riffo-Vasquez Y, Ligeiro de Oliveira AP, Page CP, Spina D, Tavares-de-Lima W. Role of sex hormones in allergic inflammation in mice. ClinExpAllergy. 2007;37(3):459–70. This study showed that female sex hormones increase OVA-induced type 2 airway inflammation by increasing IL-5 and eosinophil numbers in the BAL fluid and airway hyperesponsiveness to methacholine challenges

    CAS  Google Scholar 

  54. • Carey MA, Card JW, Bradbury JA, Moorman MP, Haykal-Coates N, Gavett SH, et al. Spontaneous airway hyperresponsiveness in estrogen receptor-alpha-deficient mice. AmJRespirCrit Care Med. 2007;175(2):126–35. Showed that estrogen receptor alpha decreases airway hyperresponsinvess to methacholine challenge and regulates M2 muscarinic receptor expression

    Article  CAS  Google Scholar 

  55. Yu CK, Liu YH, Chen CL. Dehydroepiandrosterone attenuates allergic airway inflammation in Dermatophagoides farinae-sensitized mice. J Microbiol Immunol Infect. 2002;35(3):199–202.

    CAS  PubMed  Google Scholar 

  56. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. Il-33-responsive lineage- CD25+ CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol. 2012;188(3):1503–13.

    Article  CAS  PubMed  Google Scholar 

  57. Angkasekwinai P, Park H, Wang YH, Wang YH, Chang SH, Corry DB, et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med. 2007;204(7):1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol. 2007;120(6):1324–31.

    Article  CAS  PubMed  Google Scholar 

  59. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012;129(1):191–8 e1-4.

    Article  CAS  PubMed  Google Scholar 

  60. Warren KJ, Sweeter JM, Pavlik JA, Nelson AJ, Devasure JM, Dickinson JD, et al. Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Annals of Allergy, Asthma & Immunology.

  61. Borish L, Culp JA. Asthma: a syndrome composed of heterogeneous diseases. Ann Allergy Asthma Immunol. 2008;101(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  62. Busse WW, Lemanske Jr RF. Asthma. N Engl J Med. 2001;344(5):350–62.

    Article  CAS  PubMed  Google Scholar 

  63. Munoz-Cruz S, Mendoza-Rodriquez Y, et al. Gender-related effects of sex steroids on histamine release and FcεR1 expression in rat peritoneal mast cells. Journal of Immunol Res. 2015;2015:10.

    Article  Google Scholar 

  64. Melgert BN, Oriss TB, Qi Z, Dixon-McCarthy B, Geerlings M, Hylkema MN, et al. Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol. 2010;42(5):595–603.

    Article  CAS  PubMed  Google Scholar 

  65. Bengtsson AK, Ryan EJ, Giordano D, Magaletti DM, Clark EA. 17beta-estradiol (E2) modulates cytokine and chemokine expression in human monocyte-derived dendritic cells. Blood. 2004;104(5):1404–10.

    Article  CAS  PubMed  Google Scholar 

  66. Paharkova-Vatchkova V, Maldonado R, Kovats S. Estrogen preferentially promotes the differentiation of CD11c+ CD11b (intermediate) dendritic cells from bone marrow precursors. The J Immunol. 2004;172(3):1426.

    Article  CAS  PubMed  Google Scholar 

  67. Calippe B, Douin-Echinard V, Delpy L, Laffargue M, Lelu K, Krust A, et al. 17beta-estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor alpha signaling in macrophages in vivo. J Immunol. 2010;185(2):1169–76.

    Article  CAS  PubMed  Google Scholar 

  68. • Newcomb DC, Peebles Jr RS. Th17-mediated inflammation in asthma. Curr Opin Immunol. 2013;25(6):755–60. First study to show that women with severe asthma have increased numbers of IL-17+ memory Th17 cells compared to men with severe asthma and that transfer of OVA-specific Th17 cells from female mice increased airway neutrophils in OVA-challenge recipient mice compared to transfer of OVA-specific Th17 cells from male mice

    Article  CAS  PubMed  Google Scholar 

  69. Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on tgf-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111(6):1293–8.

    Article  CAS  PubMed  Google Scholar 

  70. Newcomb DC, Boswell MG, Sherrill TP, Polosukhin VV, Boyd KL, Goleniewska K, et al. Il-17a induces signal transducers and activators of transcription-6-independent airway mucous cell metaplasia. Am J Respir Cell Mol Biol. 2013;48(6):711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Newcomb DC, Boswell MG, Reiss S, Zhou W, Goleniewska K, Toki S, et al. IL-17a inhibits airway reactivity induced by respiratory syncytial virus infection during allergic airway inflammation. Thorax. 2013;68(8):717–23.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Newcomb DC, Cephus JY, Boswell MG, Fahrenholz JM, Langley EW, Feldman AS, et al. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17a production in patients with severe asthma. J Allergy Clin Immunol. 2015;136(4):1025–34. e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ullah MA, Revez JA, Loh Z, Simpson J, Zhang V, Bain L, et al. Allergen-induced IL-6 trans-signaling activates γδ T cells to promote type 2 and type 17 airway inflammation. J Allergy Clin Immunol. 2015;136(4):1065–73.

    Article  CAS  PubMed  Google Scholar 

  74. Bloodworth MH, Newcomb DC, Dulek DE, Stier MT, Cephus JY, Zhang J, et al. STAT6 signaling attenuates interleukin-17-producing gammadelta T cells during acute Klebsiella pneumoniae infection. Infect Immun. 2016;84(5):1548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andersson A, Grahnemo L, Engdahl C, Stubelius A, Lagerquist MK, Carlsten H, et al. IL-17-producing γδt cells are regulated by estrogen during development of experimental arthritis. Clin Immunol. 2015;161(2):324–32.

    Article  CAS  PubMed  Google Scholar 

  76. Card JW, Carey MA, Bradbury JA, DeGraff LM, Morgan DL, Moorman MP, et al. Gender differences in murine airway responsiveness and lipopolysaccharide-induced inflammation. J Immunol. 2006;177(1):621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Massaro D, Massaro GD. Estrogen receptor regulation of pulmonary alveolar dimensions: alveolar sexual dimorphism in mice. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L866.

    Article  CAS  PubMed  Google Scholar 

  78. Card JW, Voltz JW, Ferguson CD, Carey MA, DeGraff LM, Peddada SD, et al. Male sex hormones promote vagally mediated reflex airway responsiveness to cholinergic stimulation. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L908.

    Article  CAS  PubMed  Google Scholar 

  79. Helmi AM, El Ghazzawi IF, Mandour MA, Shehata MA. The effect of oestrogen on the nasal respiratory mucosa. An experimental histopathological and histochemical study. J Laryngol Otol. 1975;89(12):1229–41.

    Article  CAS  PubMed  Google Scholar 

  80. Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS One. 2014;9(6):e100633.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Choi HJ, Chung YS, Kim HJ, Moon UY, Choi YH, Van Seuningen I, et al. Signal pathway of 17beta-estradiol-induced muc5b expression in human airway epithelial cells. Am J Respir Cell Mol Biol. 2009;40(2):168–78.

    Article  CAS  PubMed  Google Scholar 

  82. • Jain R, Ray JM, Pan JH, Brody SL. Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am J Respir Cell Mol Biol. 2012;46(4):446–53. Progesterone decreased cilia beat frequency in human primary airway epithelial cells, but adminstration of estrogen in combination with progesterone rescued cilia beat frequency. This study showed that sex hormones affect cilia beat frequency and mucociliary clearance

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Melgert BN, Postma DS, Kuipers I, Geerlings M, Luinge MA, van der Strate BW, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy. 2005;35(11):1496–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn C. Newcomb.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

This work was supported by National Institute of Health: R01 HL122554 and R21 AI121420.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuseini, H., Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr Allergy Asthma Rep 17, 19 (2017). https://doi.org/10.1007/s11882-017-0686-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0686-1

Keywords

Navigation