Skip to main content

Advertisement

Log in

Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders

  • Immune Deficiency and Dysregulation (D Huston and C Kuo, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Primary immunodeficiency disorders (PID) are a group of inborn errors of immunity with a broad range of clinical severity but often associated with recurrent and serious infections. While hematopoietic stem cell transplantation (HSCT) can be curative for some forms of PID, chronic and/or refractory viral infections remain a cause of morbidity and mortality both before and after HSCT. Although antiviral pharmacologic agents exist for many viral pathogens, these are associated with significant costs and toxicities and may not be effective for increasingly drug-resistant pathogens. Thus, the emergence of adoptive immunotherapy with virus-specific T lymphocytes (VSTs) is an attractive option for addressing the underlying impaired T cell immunity in many PID patients. VSTs have been utilized for PID patients following HSCT in many prior phase I trials, and may potentially be beneficial before HSCT in patients with chronic viral infections. We review the various methods of generating VSTs, clinical experience using VSTs for PID patients, and current limitations as well as potential ways to broaden the clinical applicability of adoptive immunotherapy for PID patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bousfiha AA, Jeddane L, Ailal F, et al. A phenotypic approach for IUIS PID classification and diagnosis: guidelines for clinicians at the bedside. J Clin Immunol. 2013;33(6):1078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonilla FA, Khan DA, Ballas ZK, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015.

  3. Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49(1–3):25–43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gennery AR, Slatter MA, Grandin L, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602–610 e601-611.

  6. Worth AJ, Booth C, Veys P. Stem cell transplantation for primary immune deficiency. Curr Opin Hematol. 2013;20(6):501–8.

    Article  CAS  PubMed  Google Scholar 

  7. Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118(13):3715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuellar-Rodriguez J, Freeman AF, Grossman J, et al. Matched related and unrelated donor hematopoietic stem cell transplantation for DOCK8 deficiency. Biol Blood Marrow Transplant. 2015;21(6):1037–45.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Notarangelo LD, Gambineri E, Badolato R. Immunodeficiencies with autoimmune consequences. Adv Immunol. 2006;89:321–70.

    Article  CAS  PubMed  Google Scholar 

  10. Milner JD, Vogel TP, Forbes L, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hutspardol S, Essa M, Richardson S, et al. Significant transplantation-related mortality from respiratory virus infections within the first One hundred days in children after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(10):1802–7.

    Article  PubMed  Google Scholar 

  12. Odek C, Kendirli T, Dogu F, et al. Patients with primary immunodeficiencies in pediatric intensive care unit: outcomes and mortality-related risk factors. J Clin Immunol. 2014;34(3):309–15.

    Article  PubMed  Google Scholar 

  13. Pai SY, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;37(5):434–46. This study demonstrates the impact of active infections on survival of HSCT in patients with severe combined immunodeficiency.

    Article  Google Scholar 

  14. Kwan A, Abraham RS, Currier R, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lugthart G, Oomen MA, der Zijde CM J-v, et al. The effect of cidofovir on adenovirus plasma DNA levels in stem cell transplantation recipients without T cell reconstitution. Biol Blood Marrow Transplant. 2015;21(2):293–9.

    Article  CAS  PubMed  Google Scholar 

  16. Biron KK. Antiviral drugs for cytomegalovirus diseases. Anticancer Res. 2006;71(2–3):154–63.

    CAS  Google Scholar 

  17. Sellar RS, Peggs KS. Management of multidrug-resistant viruses in the immunocompromised host. Br J Haematol. 2012;156(5):559–72.

    Article  CAS  PubMed  Google Scholar 

  18. Taylor RP, Lindorfer MA. Antigenic modulation and rituximab resistance. Semin Hematol. 2010;47(2):124–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113(23):5711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown JA, Boussiotis VA. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol. 2008;127(3):286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leen AM, Tripic T, Rooney CM. Challenges of T cell therapies for virus-associated diseases after hematopoietic stem cell transplantation. Expert Opin Biol Ther. 2010;10(3):337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hromas R, Cornetta K, Srour E, Blanke C, Broun ER. Donor leukocyte infusion as therapy of life-threatening adenoviral infections after T-cell-depleted bone marrow transplantation. Blood. 1994;84(5):1689–90.

    CAS  PubMed  Google Scholar 

  23. Roddie C, Peggs KS. Donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther. 2011;11(4):473–87.

    Article  PubMed  Google Scholar 

  24. Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanley PJ, Keller MD, Martin Manso M, et al. A phase 1 perspective: multivirus-specific T-cells from both cord blood and bone marrow transplant donors. Cytotherapy. 2016;18(6):S8.

    Article  Google Scholar 

  26. Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127(26):3331–40.

    Article  CAS  PubMed  Google Scholar 

  27. O’Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant. 2016.

  28. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038–44.

    Article  CAS  PubMed  Google Scholar 

  29. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257(5067):238–41. The first report of adoptive immunotherapy with Cytomegalovirus-specific CD8+ cytotoxic T cell clones to restore CMV-specific immunity after HSCT.

    Article  CAS  PubMed  Google Scholar 

  30. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330(17):1185–91.

    Article  CAS  PubMed  Google Scholar 

  31. Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345(8941):9–13.

    Article  CAS  PubMed  Google Scholar 

  32. Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med. 1994;331(10):679–80.

    Article  CAS  PubMed  Google Scholar 

  33. Cobbold M, Khan N, Pourgheysari B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):1160–6. This group demonstrated not only that multivirus-specific T cells can be generated using a single culture method but also that these T cell products are safe and effective when used to treat immunocompromised patients.

    Article  CAS  PubMed  Google Scholar 

  35. Gerdemann U, Keirnan JM, Katari UL, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther. 2012;20(8):1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neudorfer J, Schmidt B, Huster KM, et al. Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods. 2007;320(1–2):119–31.

    Article  CAS  PubMed  Google Scholar 

  37. Feuchtinger T, Lucke J, Hamprecht K, et al. Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2005;128(4):503–9.

    Article  PubMed  Google Scholar 

  38. Feucht J, Joachim L, Lang P, Feuchtinger T. Adoptive T-cell transfer for refractory viral infections with cytomegalovirus, Epstein-Barr virus or adenovirus after allogeneic stem cell transplantation. Klin Padiatr. 2013;225(3):164–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cohen JI. Primary immunodeficiencies associated with EBV disease. Curr Top Microbiol Immunol. 2015;390(Pt 1):241–65.

    PubMed  Google Scholar 

  40. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35. This study demonstrated long term persistence of EBV-specific T-cells following HSCT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):1549–55.

    CAS  PubMed  Google Scholar 

  42. Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):4283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bao L, Cowan MJ, Dunham K, et al. Adoptive immunotherapy with CMV-specific cytotoxic T lymphocytes for stem cell transplant patients with refractory CMV infections. J Immunother. 2012;35(3):293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Papadopoulou A, Gerdemann U, Katari UL, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6(242):242ra283. Using a rapid culture method, this group showed that VSTs that recognize 12 immunogenic antigens from 5 viruses (Epstein-Barr virus, adenovirus, cytomegalovirus, BK virus, and Human Herpesvirus 6) can be manufactured in less than two weeks. While only 14 of the 48 VST products had activity against antigens from all 5 viruses, the authors showed that viral specificity was related to prior viral exposure of the VST donors rather than a limitation in the manufacturing protocol. Safety and efficacy was demonstrated in 11 patients who had a 94% response rate.

    Article  Google Scholar 

  45. Naik S, Nicholas SK, Martinez CA, et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016. This is the largest review of VSTs used in patients with primary immunodeficiencies that showed the safety and efficiacy of VSTs in this population.

  46. Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23. This is the largest phase II study of partially-HLA matched third-party VST therapy for treatment of viral infections following HSCT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wynn RF, Arkwright PD, Haque T, et al. Treatment of Epstein-Barr-virus-associated primary CNS B cell lymphoma with allogeneic T-cell immunotherapy and stem-cell transplantation. Lancet Oncol. 2005;6(5):344–6.

    Article  PubMed  Google Scholar 

  48. Vickers MA, Wilkie GM, Robinson N, et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167(3):402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.

    Article  PubMed  Google Scholar 

  50. Qasim W, Gilmour K, Zhan H, et al. Interferon-gamma capture T cell therapy for persistent adenoviraemia following allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2013;161(3):449–52.

    Article  CAS  PubMed  Google Scholar 

  51. Creidy R, Moshous D, Touzot F, et al. Specific T cells for the treatment of cytomegalovirus and/or adenovirus in the context of hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2016;138(3):920–4. e923.

    Article  CAS  PubMed  Google Scholar 

  52. Feucht J, Opherk K, Lang P, et al. Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood. 2015;125(12):1986–94.

    Article  CAS  PubMed  Google Scholar 

  53. Melenhorst JJ, Leen AM, Bollard CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):4700–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crooks BN, Taylor CE, Turner AJ, et al. Respiratory viral infections in primary immune deficiencies: significance and relevance to clinical outcome in a single BMT unit. Bone Marrow Transplant. 2000;26(10):1097–102.

    Article  CAS  PubMed  Google Scholar 

  56. Karron RA, Collins PL. Parainfluenza viruses. In: Knipe DM, Howley PM, editors. Fields virology, vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 996–1023.

    Google Scholar 

  57. McLaughlin LP, Lang H, Williams E, et al. Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy. 2016

  58. Ma CK, Clancy L, Deo S, Blyth E, Micklethwaite KP, Gottlieb DJ. Herpes simplex virus type 1 (HSV-1) specific T-cell generation from HLA-A1- and HLA-A2-positive donors for adoptive immunotherapy. Cytotherapy. 2016

  59. Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanson EP, Monaco-Shawver L, Solt LA, et al. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122(6):1169–77. e1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):4397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cruz CR, Lam S, Hanley PJ, et al. Robust T cell responses to aspergillosis in chronic granulomatous disease: implications for immunotherapy. Clin Exp Immunol. 2013;174(1):89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marciano BE, Huang CY, Joshi G, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith LL, Wright BL, Buckley RH. Successful treatment of disseminated BCG in a patient with severe combined immunodeficiency. J Allergy Clin Immunol Pract. 2015;3(3):438–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the staffs of the Divisions of Allergy and Immunology and Blood and Marrow Transplantation at Children’s National Medical Center, our collaborators at the Cell and Gene Therapy center at Baylor College of Medicine and other institutions, the Children’s Research Institute, and the Jeffrey Modell Foundation for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Keller.

Ethics declarations

Conflict of Interest

Drs. McLaughlin, Bollard, and Keller declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immune Deficiency and Dysregulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLaughlin, L.P., Bollard, C.M. & Keller, M. Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders. Curr Allergy Asthma Rep 17, 3 (2017). https://doi.org/10.1007/s11882-017-0669-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0669-2

Keywords

Navigation