Skip to main content

Advertisement

Log in

Regulation of IgE Responses by γδ T Cells

  • Basic and Applied Science (M Frieri and PJ Bryce, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Immunoglobulin E (IgE) antibodies play a crucial role in host defense against parasite infections. However, inappropriate IgE responses are also involved in the pathogenesis of allergic diseases. The generation of IgE antibodies is a tightly controlled process regulated by multiple transcription factors, cytokines, and immune cells including γδ T cells. Accumulating evidence demonstrates that γδ T cells play a critical role in regulating IgE responses; however, both IgE-enhancing and IgE-suppressive effects are suggested for these cells in different experimental systems. In this review, we examine the available evidence and discuss the role of γδ T cells in IgE regulation both in the context of antigen-induced immune responses and in the state of partial immunodeficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8:205–17.

    Article  CAS  PubMed  Google Scholar 

  2. Dullaers M, De Bruyne R, Ramadani F, Gould HJ, Gevaert P, Lambrecht BN. The who, where, and when of IgE in allergic airway disease. J Allergy Clin Immunol. 2012;129:635–45.

    Article  CAS  PubMed  Google Scholar 

  3. Wu LC, Zarrin AA. The production and regulation of IgE by the immune system. Nat Rev Immunol. 2014;14:247–59. An excellent review on how IgE is produced and regulated in vivo.

    Article  CAS  PubMed  Google Scholar 

  4. Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban Jr JF, Curotto de Lafaille MA, et al. Unique maturation program of the IgE response in vivo. Immunity. 2007;26:191–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Talay O, Yan D, Brightbill HD, Straney EE, Zhou M, Ladi E, et al. IgE(+) memory B cells and plasma cells generated through a germinal-­‐center pathway. Nat Immunol. 2012;13:396–404.

    Article  CAS  PubMed  Google Scholar 

  6. Yang Z, Sullivan BM, Allen CD. Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition. Immunity. 2012;36:857–72.

    Article  CAS  PubMed  Google Scholar 

  7. Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007;7:365–78.

    Article  CAS  PubMed  Google Scholar 

  8. Redhu NS, Saleh A, Lee HC, Halayko AJ, Ziegler SF, Gounni AS. IgE induces transcriptional regulation of thymic stromal lymphopoietin in human airway smooth muscle cells. J Allergy Clin Immunol. 2011;128:892–6.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng LE, Wang ZE, Locksley RM. Murine B cells regulate serum IgE levels in a CD23-dependent manner. J Immunol. 2010;185:5040–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Acharya M, Borland G, Edkins AL, Maclellan LM, Matheson J, Ozanne BW, et al. CD23/FcepsilonRII: molecular multi-tasking. Clin Exp Immunol. 2010;162:12–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bacharier LB, Geha RS. Molecular mechanisms of IgE regulation. J Allergy Clin Immunol. 2000;105:S547–58.

    Article  CAS  PubMed  Google Scholar 

  12. Ozcan E, Notarangelo LD, Geha RS. Primary immune deficiencies with aberrant IgE production. J Allergy Clin Immunol. 2008;122:1054–62. quiz 1063–1054.

    Article  CAS  PubMed  Google Scholar 

  13. Geha RS, Jabara HH, Brodeur SR. The regulation of immunoglobulin E class-­switch recombination. Nat Rev Immunol. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  14. Wesemann DR, Magee JM, Boboila C, Calado DP, Gallagher MP, Portuguese AJ, et al. Immature B cells preferentially switch to IgE with increased direct Smu to Sepsilon recombination. J Exp Med. 2011;208:2733–46. Provides evidence that immature B cells preferentially adopt the direct IgE switching pathway in response to αCD40/IL-4 stimulation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chaudhuri J, Alt FW. Class-­‐switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol. 2004;4:541–52.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong H, Dolpady J, Wabl M, Curotto de Lafaille MA, Lafaille JJ. Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med. 2012;209:353–64. Provides evidence that high affinity IgE is generated through sequential switching pathway (Sμ-Sγ1-Sε), whereas low affinity IgE is produced by direct switching (Sμ-Sε).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Xiong H, CurottodeLafaille MA, Lafaille JJ. What is unique about the IgE response? Adv Immunol. 2012;116:113–41.

    Article  CAS  PubMed  Google Scholar 

  18. Misaghi S, Senger K, Sai T, Qu Y, Sun Y, Hamidzadeh K, et al. Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination. Proc Natl Acad Sci U S A. 2013;110:15770–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang T, Franklin A, Boboila C, McQuay A, Gallagher MP, Manis JP, et al. Downstream class switching leads to IgE antibody production by B lymphocytes lacking IgM switch regions. Proc Natl Acad Sci U S A. 2010;107:3040–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci U S A. 2005;102:2466–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Castigli E, Alt FW, Davidson L, Bottaro A, Mizoguchi E, Bhan AK, et al. CD40-deficient mice generated by recombination-­‐activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci U S A. 1994;91:12135–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993;361:539–41.

    Article  CAS  PubMed  Google Scholar 

  23. Fuleihan R, Ramesh N, Loh R, Jabara H, Rosen RS, Chatila T, et al. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A. 1993;90:2170–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993;361:541–3.

    Article  CAS  PubMed  Google Scholar 

  25. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72:291–300.

    Article  CAS  PubMed  Google Scholar 

  26. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259:990–3.

    Article  CAS  PubMed  Google Scholar 

  27. Durandy A. Hyper-IgM syndromes: a model for studying the regulation of class switch recombination and somatic hypermutation generation. Biochem Soc Trans. 2002;30:815–8.

    Article  CAS  PubMed  Google Scholar 

  28. Schultz CL, Rothman P, Kuhn R, Kehry M, Muller W, Rajewsky K, et al. T helper cell membranes promote IL-4-independent expression of germ-line C gamma 1 transcripts in B cells. J Immunol. 1992;149:60–4.

    CAS  PubMed  Google Scholar 

  29. Vercelli D, Jabara HH, Arai K, Geha RS. Induction of human IgE synthesis requires interleukin 4 and T/B cell interactions involving the T cell receptor/CD3 complex and MHC class II antigens. J Exp Med. 1989;169:1295–307.

    Article  CAS  PubMed  Google Scholar 

  30. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A. 1993;90:3730–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Defrance T, Carayon P, Billian G, Guillemot JC, Minty A, Caput D, et al. Interleukin 13 is a B cell stimulating factor. J Exp Med. 1994;179:135–43.

    Article  CAS  PubMed  Google Scholar 

  32. Finkelman FD, Katona IM, Urban Jr JF, Snapper CM, Ohara J, Paul WE. Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine B-cell stimulatory factor 1. Proc Natl Acad Sci U S A. 1986;83:9675–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Finkelman FD, Urban Jr JF, Beckmann MP, Schooley KA, Holmes JM, Katona IM. Regulation of murine in vivo IgG and IgE responses by a monoclonal anti-IL-4 receptor antibody. Int Immunol. 1991;3:599–607.

    Article  CAS  PubMed  Google Scholar 

  34. Garrone P, Djossou O, Galizzi JP, Banchereau J. A recombinant extracellular domain of the human interleukin 4 receptor inhibits the biological effects of interleukin 4 on T and B lymphocytes. Eur J Immunol. 1991;21:1365–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chiaramonte MG, Schopf LR, Neben TY, Cheever AW, Donaldson DD, Wynn TA. IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol. 1999;162:920–30.

    CAS  PubMed  Google Scholar 

  36. Yoo J, Omori M, Gyarmati D, Zhou B, Aye T, Brewer A, et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med. 2005;202:541–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Purkerson JM, Isakson PC. Interleukin 5 (IL-5) provides a signal that is required in addition to IL-4 for isotype switching to immunoglobulin (Ig) G1 and IgE. J Exp Med. 1992;175:973–82.

    Article  CAS  PubMed  Google Scholar 

  38. Vercelli D, Jabara HH, Arai K, Yokota T, Geha RS. Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. Eur J Immunol. 1989;19:1419–24.

    Article  CAS  PubMed  Google Scholar 

  39. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15:985–95.

    Article  CAS  PubMed  Google Scholar 

  40. Kondo Y, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Morimoto M, Hayashi N, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol. 2008;20:791–800.

    Article  CAS  PubMed  Google Scholar 

  41. Finkelman FD, Madden KB, Cheever AW, Katona IM, Morris SC, Gately MK, et al. Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J Exp Med. 1994;179:1563–72.

    Article  CAS  PubMed  Google Scholar 

  42. Pene J, Rousset F, Briere F, Chretien I, Bonnefoy JY, Spits H, et al. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. Proc Natl Acad Sci U S A. 1988;85:6880–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chen YH, Bieneman AP, Creticos PS, Chichester KL, Schroeder JT. IFN-alpha inhibits IL-3 priming of human basophil cytokine secretion but not leukotriene C4 and histamine release. J Allergy Clin Immunol. 2003;112:944–50.

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Rothman P. IFN-gamma represses epsilon germline transcription and subsequently down-regulates switch recombination to epsilon. Int Immunol. 1994;6:515–21.

    Article  CAS  PubMed  Google Scholar 

  45. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation‐induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  CAS  PubMed  Google Scholar 

  46. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, et al. Essential role of Stat6 in IL-4 signalling. Nature. 1996;380:627–30.

    Article  CAS  PubMed  Google Scholar 

  47. Harris MB, Chang CC, Berton MT, Danial NN, Zhang J, Kuehner D, et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol Cell Biol. 1999;19:7264–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Kusunoki T, Sugai M, Katakai T, Omatsu Y, Iyoda T, Inaba K, et al. TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J Allergy Clin Immunol. 2003;111:136–42.

    Article  CAS  PubMed  Google Scholar 

  49. Sugai M, Gonda H, Kusunoki T, Katakai T, Yokota Y, Shimizu A. Essential role of Id2 in negative regulation of IgE class switching. Nat Immunol. 2003;4:25–30.

    Article  CAS  PubMed  Google Scholar 

  50. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–78.

    Article  CAS  PubMed  Google Scholar 

  51. Puig-Pey I, Bohne F, Benitez C, Lopez M, Martinez-Llordella M, Oppenheimer F, et al. Characterization of gammadelta T cell subsets in organ transplantation. Transpl Int. 2010;23:1045–55.

    Article  CAS  PubMed  Google Scholar 

  52. O’Brien RL, Roark CL, Jin N, Aydintug MK, French JD, Chain JL, et al. Gammadelta T-cell receptors: functional correlations. Immunol Rev. 2007;215:77–88.

    Article  PubMed  Google Scholar 

  53. Morita CT, Verma S, Aparicio P, Martinez C, Spits H, Brenner MB. Functionally distinct subsets of human gamma/delta T cells. Eur J Immunol. 1991;21:2999–3007.

    Article  CAS  PubMed  Google Scholar 

  54. Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M, et al. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood. 2009;113:6611–8.

    Article  CAS  PubMed  Google Scholar 

  55. Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol. 2007;179:5576–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;31:321–30.

    Article  CAS  PubMed  Google Scholar 

  57. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol. 2007;178:4466–72.

    Article  CAS  PubMed  Google Scholar 

  58. Azuara V, Levraud JP, Lembezat MP, Pereira P. A novel subset of adult gamma delta thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire. Eur J Immunol. 1997;27:544–53.

    Article  CAS  PubMed  Google Scholar 

  59. Gerber DJ, Azuara V, Levraud JP, Huang SY, Lembezat MP, Pereira P. IL-4-producing gamma delta T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J Immunol. 1999;163:3076–82.

    CAS  PubMed  Google Scholar 

  60. Grigoriadou K, Boucontet L, Pereira P. Most IL-4-producing gamma delta thymocytes of adult mice originate from fetal precursors. J Immunol. 2003;171:2413–20.

    Article  CAS  PubMed  Google Scholar 

  61. Jameson JM, Cauvi G, Witherden DA, Havran WL. A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J Immunol. 2004;172:3573–9.

    Article  CAS  PubMed  Google Scholar 

  62. Jameson J, Havran WL. Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev. 2007;215:114–22.

    Article  CAS  PubMed  Google Scholar 

  63. Boismenu R, Hobbs MV, Boullier S, Havran WL. Molecular and cellular biology of dendritic epidermal T cells. Semin Immunol. 1996;8:323–31.

    Article  CAS  PubMed  Google Scholar 

  64. Hahn YS, Taube C, Jin N, Sharp L, Wands JM, Aydintug MK, et al. Different potentials of gamma delta T cell subsets in regulating airway responsiveness: V gamma 1+ cells, but not V gamma 4+ cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. J Immunol. 2004;172:2894–902.

    Article  CAS  PubMed  Google Scholar 

  65. Di Fabrizio L, Nassef M, Ware R, Butler Jr VP, Chess L. Human gamma delta T cells amplify IgE production by Epstein-Barr virus-activated B cells. Trans Assoc Am Phys. 1991;104:155–63.

    PubMed  Google Scholar 

  66. Gascan H, Aversa GG, Gauchat JF, Van Vlasselaer P, Roncarolo MG, Yssel H, et al. Membranes of activated CD4+ T cells expressing T cell receptor (TcR) alpha beta or TcR gamma delta induce IgE synthesis by human B cells in the presence of interleukin-4. Eur J Immunol. 1992;22:1133–41.

    Article  CAS  PubMed  Google Scholar 

  67. Horner AA, Jabara H, Ramesh N, Geha RS. gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J Exp Med. 1995;181:1239–44.

    Article  CAS  PubMed  Google Scholar 

  68. Russano AM, Agea E, Corazzi L, Postle AD, De Libero G, Porcelli S, et al. Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted gamma delta T cells. J Allergy Clin Immunol. 2006;117:1178–84.

    Article  CAS  PubMed  Google Scholar 

  69. Zuany-Amorim C, Ruffie C, Haile S, Vargaftig BB, Pereira P, Pretolani M. Requirement for gammadelta T cells in allergic airway inflammation. Science. 1998;280:1265–7.

    Article  CAS  PubMed  Google Scholar 

  70. Schramm CM, Puddington L, Yiamouyiannis CA, Lingenheld EG, Whiteley HE, Wolyniec WW, et al. Proinflammatory roles of T-cell receptor (TCR)gammadelta and TCRalphabeta lymphocytes in a murine model of asthma. Am J Respir Cell Mol Biol. 2000;22:218–25.

    Article  CAS  PubMed  Google Scholar 

  71. Svensson L, Lilliehook B, Larsson R, Bucht A. gammadelta T cells contribute to the systemic immunoglobulin E response and local B-cell reactivity in allergic eosinophilic airway inflammation. Immunology. 2003;108:98–108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, et al. The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol. 2009;183:849–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Simon HU, Seger R. Hyper-IgE syndrome associated with an IL-4-producing gamma/delta(+) T-cell clone. J Allergy Clin Immunol. 2007;119:246–8.

    Article  CAS  PubMed  Google Scholar 

  74. Wen L, Roberts SJ, Viney JL, Wong FS, Mallick C, Findly RC, et al. Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in alpha beta(+) T cells. Nature. 1994;369:654–8.

    Article  CAS  PubMed  Google Scholar 

  75. Felices M, Yin CC, Kosaka Y, Kang J, Berg LJ. Tec kinase Itk in gammadeltaT cells is pivotal for controlling IgE production in vivo. Proc Natl Acad Sci U S A. 2009;106:8308–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Qi Q, Xia M, Hu J, Hicks E, Iyer A, Xiong N, et al. Enhanced development of CD4+ gammadelta T cells in the absence of Itk results in elevated IgE production. Blood. 2009;114:564–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Nunez-Cruz S, Aguado E, Richelme S, Chetaille B, Mura AM, Richelme M, et al. LAT regulates gammadelta T cell homeostasis and differentiation. Nat Immunol. 2003;4:999–1008.

    Article  CAS  PubMed  Google Scholar 

  78. Parravicini V, Field AC, Tomlinson PD, Basson MA, Zamoyska R. Itch−/− alphabeta and gammadelta T cells independently contribute to autoimmunity in Itchy mice. Blood. 2008;111:4273–7282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Huang Y, Heiser RA, Detanico TO, Getahun A, Kirchenbaum GA, Casper TL, et al. gammadelta T cells affect IL-4 production and B-cell tolerance. Proc Natl Acad Sci U S A. 2015;112:E39–48. Offers evidence that γδ T cells can regulate serum IgE levels through modulating IL-4 production even without deliberate immunization.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. McMenamin C, Oliver J, Girn B, Holt BJ, Kees UR, Thomas WR, et al. Regulation of T-cell sensitization at epithelial surfaces in the respiratory tract: suppression of IgE responses to inhaled antigens by CD3+ Tcr alpha-/beta-lymphocytes (putative gamma/delta T cells). Immunology. 1991;74:234–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. McMenamin C, McKersey M, Kuhnlein P, Hunig T, Holt PG. Gamma delta T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J Immunol. 1995;154:4390–4.

    CAS  PubMed  Google Scholar 

  82. McMenamin C, Pimm C, McKersey M, Holt PG. Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science. 1994;265:1869–71.

    Article  CAS  PubMed  Google Scholar 

  83. Huang Y, Aydintug MK, Loomis J, Macleod MK, McKee AS, Kirchenbaum G, et al. Antigen-specific regulation of IgE antibodies by non-antigen-specific gammadelta T cells. J Immunol. 2013;190:913–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. de Araujo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF. PAS-1, an Ascaris suum protein, modulates allergic airway inflammation via CD8+gammadeltaTCR+ and CD4+CD25+FoxP3+ T cells. Scand J Immunol. 2010;72:491–503.

    Article  PubMed  Google Scholar 

  85. Bol-Schoenmakers M, Marcondes Rezende M, Bleumink R, Boon L, Man S, Hassing I, et al. Regulation by intestinal gammadelta T cells during establishment of food allergic sensitization in mice. Allergy. 2011;66:331–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Yafei Huang, Zhifang Yang, Jessica McGowan, Hua Huang, Rebecca L O’Brien, and Willi K Born declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Huang.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yang, Z., McGowan, J. et al. Regulation of IgE Responses by γδ T Cells. Curr Allergy Asthma Rep 15, 13 (2015). https://doi.org/10.1007/s11882-015-0519-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0519-z

Keywords

Navigation