Skip to main content

Advertisement

Log in

Cellular Targeting in Autoimmunity

  • AUTOIMMUNITY (TK TARRANT, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Many biologic agents that were first approved for the treatment of malignancies are now being actively investigated and used in a variety of autoimmune diseases such as rheumatoid arthritis (RA), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, systemic lupus erythematosus (SLE), and Sjogren’s syndrome. The relatively recent advance of selective immune targeting has significantly changed the management of autoimmune disorders and in part can be attributed to the progress made in understanding effector cell function and their signaling pathways. In this review, we will discuss the recent FDA-approved biologic therapies that directly target immune cells as well as the most promising investigational drugs affecting immune cell function and signaling for the treatment of autoimmune disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lund FE. Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol. 2008;20(3):332–8.

    Article  PubMed  CAS  Google Scholar 

  2. Tak PP, Kalden JR. Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther. 2011;13 Suppl 1:S5.

    PubMed  CAS  Google Scholar 

  3. Dorner T, Kinnman N, Tak PP. Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol Ther. 2010;125(3):464–75.

    Article  PubMed  CAS  Google Scholar 

  4. Munoz LE, et al. Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus. 2008;17(5):371–5.

    Article  PubMed  CAS  Google Scholar 

  5. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.

    Article  PubMed  CAS  Google Scholar 

  6. Hansen A, Lipsky PE, Dorner T. B cells in Sjogren's syndrome: indications for disturbed selection and differentiation in ectopic lymphoid tissue. Arthritis Res Ther. 2007;9(4):218.

    Article  PubMed  CAS  Google Scholar 

  7. Lepse N, et al. Immune regulatory mechanisms in ANCA-associated vasculitides. Autoimmun Rev. 2011;11(2):77–83.

    Article  PubMed  CAS  Google Scholar 

  8. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.

    Article  PubMed  CAS  Google Scholar 

  9. Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood. 2004;103(7):2738–43.

    Article  PubMed  CAS  Google Scholar 

  10. Buch MH, et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(6):909–20.

    Article  PubMed  CAS  Google Scholar 

  11. Mease PJ. B cell-targeted therapy in autoimmune disease: rationale, mechanisms, and clinical application. J Rheumatol. 2008;35(7):1245–55.

    PubMed  CAS  Google Scholar 

  12. Stashenko P, et al. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125(4):1678–85.

    PubMed  CAS  Google Scholar 

  13. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230(1):128–43.

    Article  PubMed  CAS  Google Scholar 

  14. Dorner T, Goldenberg DM. Targeting CD22 as a strategy for treating systemic autoimmune diseases. Ther Clin Risk Manag. 2007;3(5):953–9.

    PubMed  Google Scholar 

  15. Otipoby KL, et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature. 1996;384(6610):634–7.

    Article  PubMed  CAS  Google Scholar 

  16. Cohen SB, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006;54(9):2793–806.

    Article  PubMed  CAS  Google Scholar 

  17. Emery P, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 2006;54(5):1390–400.

    Article  PubMed  CAS  Google Scholar 

  18. • Singh JA, et al. Update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res. 2012;64(5):625–39. The 2012 American College of Rheumatology updated the 2008 recommendations for treating rheumatoid arthritis including a treatment algorithm for using DMARDs and biologic therapies in RA as well as recommendations for tuberculosis screening and vaccinations. There are new recommendations for the use of rituximab in RA including special populations such as patients with malignancy, hepatitis, and congestive heart failure.

    Article  CAS  Google Scholar 

  19. Falk RJ, et al. Granulomatosis with polyangiitis (Wegener's): an alternative name for Wegener's granulomatosis. Arthritis Rheum. 2011;63(4):863–4.

    Article  PubMed  Google Scholar 

  20. Bosch X, Guilabert A, Font J. Antineutrophil cytoplasmic antibodies. Lancet. 2006;368(9533):404–18.

    Article  PubMed  CAS  Google Scholar 

  21. de Groot K, et al. Pulse versus daily oral cyclophosphamide for induction of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized trial. Ann Intern Med. 2009;150(10):670–80.

    PubMed  Google Scholar 

  22. Mukhtyar C, et al. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann Rheum Dis. 2009;68(3):310–7.

    Article  PubMed  CAS  Google Scholar 

  23. Bosch X, et al. Immunotherapy for antineutrophil cytoplasmic antibody-associated vasculitis: challenging the therapeutic status quo? Trends Immunol. 2008;29(6):280–9.

    Article  PubMed  CAS  Google Scholar 

  24. Rutgers A, Kallenberg CG. Refractory disease in antineutrophil cytoplasmic antibodies associated vasculitis. Curr Opin Rheumatol. 2012;24(3):245–51.

    Article  PubMed  Google Scholar 

  25. Genentech. Rituxan Prescribing Information. 2012 [cited 2012 August 24 ]; Available from: http://www.rituxan.com/index.html.

  26. Popa ER, et al. Differential B- and T-cell activation in Wegener's granulomatosis. J Allergy Clin Immunol. 1999;103(5 Pt 1):885–94.

    Article  PubMed  CAS  Google Scholar 

  27. Jennette JC, Xiao H, Falk RJ. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies. J Am Soc Nephrol: JASN. 2006;17(5):1235–42.

    Article  PubMed  Google Scholar 

  28. Gomez-Puerta JA, et al. B-cell depleting agents for ANCA vasculitides: a new therapeutic approach. Autoimmun Rev. 2012;11(9):646–52.

    Article  PubMed  CAS  Google Scholar 

  29. •• Jones RB, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363(3):211–20. One of two practice-changing studies of rituximab in severe ANCA vasculitis patients, which led to FDA approval of rituximab for treatment of ANCA vasculitis.

    Article  PubMed  CAS  Google Scholar 

  30. Stone JH, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.

    Article  PubMed  CAS  Google Scholar 

  31. Rhee EP, Laliberte KA, Niles JL. Rituximab as maintenance therapy for anti-neutrophil cytoplasmic antibody-associated vasculitis. Clin J Am Soc Nephrol: CJASN. 2010;5(8):1394–400.

    Article  PubMed  CAS  Google Scholar 

  32. Roubaud-Baudron C, et al. Rituximab maintenance therapy for granulomatosis with polyangiitis and microscopic polyangiitis. J Rheumatol. 2012;39(1):125–30.

    Article  PubMed  CAS  Google Scholar 

  33. Lamprecht P, Gause A, Gross WL. Cryoglobulinemic vasculitis. Arthritis Rheum. 1999;42(12):2507–16.

    Article  PubMed  CAS  Google Scholar 

  34. Ramos-Casals M, et al. The cryoglobulinaemias. Lancet. 2012;379(9813):348–60.

    Article  PubMed  CAS  Google Scholar 

  35. Cacoub P, et al. Treatment of hepatitis C virus-related systemic vasculitis. J Rheumatol. 2005;32(11):2078–82.

    PubMed  CAS  Google Scholar 

  36. Landau DA, et al. Relapse of hepatitis C virus-associated mixed cryoglobulinemia vasculitis in patients with sustained viral response. Arthritis Rheum. 2008;58(2):604–11.

    Article  PubMed  Google Scholar 

  37. De Vita S, et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum. 2012;64(3):843–53.

    Article  PubMed  CAS  Google Scholar 

  38. Sneller MC, Hu Z, Langford CA. A randomized controlled trial of rituximab following failure of antiviral therapy for hepatitis C virus-associated cryoglobulinemic vasculitis. Arthritis Rheum. 2012;64(3):835–42.

    Article  PubMed  CAS  Google Scholar 

  39. Fox RI. Sjogren's syndrome. Lancet. 2005;366(9482):321–31.

    Article  PubMed  CAS  Google Scholar 

  40. Vitali C, et al. Classification criteria for Sjogren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61(6):554–8.

    Article  PubMed  CAS  Google Scholar 

  41. Meijer JM, et al. Effectiveness of rituximab treatment in primary Sjogren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(4):960–8.

    Article  PubMed  CAS  Google Scholar 

  42. Seve P, et al. Successful treatment with rituximab in a patient with mental nerve neuropathy in primary Sjogren's syndrome. Rheumatol Int. 2007;28(2):175–7.

    Article  PubMed  Google Scholar 

  43. Looney RJ, Anolik J, Sanz I. B lymphocytes in systemic lupus erythematosus: lessons from therapy targeting B cells. Lupus. 2004;13(5):381–90.

    Article  PubMed  CAS  Google Scholar 

  44. Pons-Estel GJ, et al. Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum. 2010;39(4):257–68.

    Article  PubMed  Google Scholar 

  45. Ramos-Casals M, et al. Rituximab in systemic lupus erythematosus: A systematic review of off-label use in 188 cases. Lupus. 2009;18(9):767–76.

    Article  PubMed  CAS  Google Scholar 

  46. Ramos-Casals M, et al. B-cell-depleting therapy in systemic lupus erythematosus. Am J Med. 2012;125(4):327–36.

    Article  PubMed  CAS  Google Scholar 

  47. Merrill JT, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010;62(1):222–33.

    Article  PubMed  CAS  Google Scholar 

  48. Rovin BH, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64(4):1215–26.

    Article  PubMed  CAS  Google Scholar 

  49. Ostergaard M, et al. Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis Rheum. 2010;62(8):2227–38.

    Article  PubMed  CAS  Google Scholar 

  50. Taylor PC, et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis. 2011;70(12):2119–25.

    Article  PubMed  CAS  Google Scholar 

  51. Carson KR, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a Review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 2009;10(8):816–24.

    Article  PubMed  CAS  Google Scholar 

  52. Carnahan J, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clinical Canc Res Off J Am Assoc Canc Res. 2003;9(10 Pt 2):3982S–90.

    CAS  Google Scholar 

  53. Dorner T, et al. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther. 2006;8(3):R74.

    Article  PubMed  CAS  Google Scholar 

  54. Daridon C, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(6):R204.

    Article  PubMed  CAS  Google Scholar 

  55. Leonard JP, Goldenberg DM. Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene. 2007;26(25):3704–13.

    Article  PubMed  CAS  Google Scholar 

  56. Traczewski P, Rudnicka L. Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol. 2011;71(2):175–82.

    Article  PubMed  CAS  Google Scholar 

  57. Steinfeld SD, et al. Epratuzumab (humanised anti-CD22 antibody) in primary Sjogren's syndrome: an open-label phase I/II study. Arthritis Res Ther. 2006;8(4):R129.

    Article  PubMed  CAS  Google Scholar 

  58. Cancro MP, D'Cruz DP, Khamashta MA. The role of B lymphocyte stimulator (BLyS) in systemic lupus erythematosus. J Clin Investig. 2009;119(5):1066–73.

    Article  PubMed  CAS  Google Scholar 

  59. Groom J, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J Clin Investig. 2002;109(1):59–68.

    PubMed  CAS  Google Scholar 

  60. Becker-Merok A, Nikolaisen C, Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus. 2006;15(9):570–6.

    Article  PubMed  CAS  Google Scholar 

  61. Cheema GS, et al. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001;44(6):1313–9.

    Article  PubMed  CAS  Google Scholar 

  62. Baker KP, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 2003;48(11):3253–65.

    Article  PubMed  CAS  Google Scholar 

  63. Jacobi AM, et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2010;62(1):201–10.

    Article  PubMed  CAS  Google Scholar 

  64. •• Navarra SV, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31. The BLISS-52 trial resulted in FDA approval of belimumab for treatment of active lupus in patients who had previously failed other standard immunosuppressive therapies. Belimumab-treated patients had significantly higher systemic lupus responder index (SRI) response rates than patients receiving placebo.

    Article  PubMed  CAS  Google Scholar 

  65. Furie R, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30.

    Article  PubMed  CAS  Google Scholar 

  66. Manzi S, et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Annals of the rheumatic diseases, 2012.

  67. Stohl W. Biologic differences between various inhibitors of the BLyS/BAFF pathway: Should we expect differences between belimumab and other inhibitors in development? Current rheumatology reports, 2012.

  68. Hsu H, et al. A novel modality of BAFF-specific inhibitor AMG623 peptibody reduces B-cell number and improves outcomes in murine models of autoimmune disease. Clin Exp Rheumatol. 2012;30(2):197–201.

    PubMed  Google Scholar 

  69. Pharma A. Anthera updates phase 3 plans following results from the phase 2b PEARL-SC dose ranging study of blisibimod. 2012 [cited 2012 August 24]; Available from: http://investor.anthera.com/releasedetail.cfm?ReleaseID=687254.

  70. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907–16.

    Article  PubMed  CAS  Google Scholar 

  71. van Kuijk AW, et al. Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment. Ann Rheum Dis. 2006;65(12):1551–7.

    Article  PubMed  CAS  Google Scholar 

  72. Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev. 2009;229(1):307–21.

    Article  PubMed  CAS  Google Scholar 

  73. Sansom DM, Walker LS. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev. 2006;212:131–48.

    Article  PubMed  CAS  Google Scholar 

  74. Moreland LW, et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum. 2002;46(6):1470–9.

    Article  PubMed  CAS  Google Scholar 

  75. Schiff M, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis. 2008;67(8):1096–103.

    Article  PubMed  CAS  Google Scholar 

  76. Genovese MC, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114–23.

    Article  PubMed  CAS  Google Scholar 

  77. Westhovens R, et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann Rheum Dis. 2009;68(12):1870–7.

    Article  PubMed  CAS  Google Scholar 

  78. Bathon J, et al. Sustained disease remission and inhibition of radiographic progression in methotrexate-naive patients with rheumatoid arthritis and poor prognostic factors treated with abatacept: 2-year outcomes. Ann Rheum Dis. 2011;70(11):1949–56.

    Article  PubMed  CAS  Google Scholar 

  79. Emery P, et al. Impact of T-cell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial). Ann Rheum Dis. 2010;69(3):510–6.

    Article  PubMed  CAS  Google Scholar 

  80. Keystone EC, et al. Abatacept in subjects who switch from intravenous to subcutaneous therapy: results from the phase IIIb ATTUNE study. Ann Rheum Dis. 2012;71(6):857–61.

    Article  PubMed  CAS  Google Scholar 

  81. Weinblatt M, et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis. 2007;66(2):228–34.

    Article  PubMed  CAS  Google Scholar 

  82. Mease P, et al. Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum. 2011;63(4):939–48.

    Article  PubMed  CAS  Google Scholar 

  83. Schiffer L, et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol. 2003;171(1):489–97.

    PubMed  CAS  Google Scholar 

  84. Merrill JT, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(10):3077–87.

    Article  PubMed  CAS  Google Scholar 

  85. Sugiyama H, et al. Alefacept in the treatment of psoriasis. Clin Dermatol. 2008;26(5):503–8.

    Article  PubMed  Google Scholar 

  86. Miller GT, et al. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med. 1993;178(1):211–22.

    Article  PubMed  CAS  Google Scholar 

  87. Majeau GR, et al. Mechanism of lymphocyte function-associated molecule 3-Ig fusion proteins inhibition of T cell responses. Structure/function analysis in vitro and in human CD2 transgenic mice. J Immunol. 1994;152(6):2753–67.

    PubMed  CAS  Google Scholar 

  88. Mease PJ, Gladman DD, Keystone EC. Alefacept in combination with methotrexate for the treatment of psoriatic arthritis: results of a randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2006;54(5):1638–45.

    Article  PubMed  CAS  Google Scholar 

  89. Talamonti M, et al. Efalizumab. Exp Opin Drug Saf. 2011;10(2):239–51.

    Article  CAS  Google Scholar 

  90. Papp KA, et al. Efalizumab for the treatment of psoriatic arthritis. J Cutan Med Surg. 2007;11(2):57–66.

    PubMed  CAS  Google Scholar 

  91. Viguier M, et al. Onset of psoriatic arthritis in patients treated with efalizumab for moderate to severe psoriasis. Arthritis Rheum. 2008;58(6):1796–802.

    Article  PubMed  CAS  Google Scholar 

  92. Amu S, et al. CD25-expressing B-lymphocytes in rheumatic diseases. Scand J Immunol. 2007;65(2):182–91.

    Article  PubMed  CAS  Google Scholar 

  93. Martin JF, et al. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56(bright) NK cells. J Immunol. 2010;185(2):1311–20.

    Article  PubMed  CAS  Google Scholar 

  94. Vincenti F, Nashan B, Light S. Daclizumab: outcome of phase III trials and mechanism of action. Double therapy and the triple therapy study groups. Transplant Proc. 1998;30(5):2155–8.

    Article  PubMed  CAS  Google Scholar 

  95. Nussenblatt RB, et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc Natl Acad Sci U S A. 1999;96(13):7462–6.

    Article  PubMed  CAS  Google Scholar 

  96. Yeh S, et al. High-dose humanized anti-IL-2 receptor alpha antibody (daclizumab) for the treatment of active, non-infectious uveitis. J Autoimmun. 2008;31(2):91–7.

    Article  PubMed  CAS  Google Scholar 

  97. Sen HN, et al. High-dose daclizumab for the treatment of juvenile idiopathic arthritis-associated active anterior uveitis. Am J Ophthalmol. 2009;148(5):696–703 e1.

    Article  PubMed  CAS  Google Scholar 

  98. Brok HP, et al. Prophylactic and therapeutic effects of a humanized monoclonal antibody against the IL-2 receptor (DACLIZUMAB) on collagen-induced arthritis (CIA) in rhesus monkeys. Clin Exp Immunol. 2001;124(1):134–41.

    Article  PubMed  CAS  Google Scholar 

  99. Martin R. Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing-remitting multiple sclerosis. Clin Immunol. 2012;142(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  100. Szekanecz Z, et al. Chemokines and angiogenesis in rheumatoid arthritis. Front Biosci. 2009;1:44–51.

    Google Scholar 

  101. Koch AE. Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum. 2005;52(3):710–21.

    Article  PubMed  Google Scholar 

  102. Szekanecz Z, Koch AE, Tak PP. Chemokine and chemokine receptor blockade in arthritis, a prototype of immune-mediated inflammatory diseases. Neth J Med. 2011;69(9):356–66.

    PubMed  CAS  Google Scholar 

  103. Katschke Jr KJ, et al. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum. 2001;44(5):1022–32.

    Article  PubMed  CAS  Google Scholar 

  104. Haringman JJ, et al. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis. 2006;65(3):294–300.

    Article  PubMed  CAS  Google Scholar 

  105. Zhao Q. Dual targeting of CCR2 and CCR5: therapeutic potential for immunologic and cardiovascular diseases. J Leukoc Biol. 2010;88(1):41–55.

    Article  PubMed  CAS  Google Scholar 

  106. Vierboom MP, et al. Inhibition of the development of collagen-induced arthritis in rhesus monkeys by a small molecular weight antagonist of CCR5. Arthritis Rheum. 2005;52(2):627–36.

    Article  PubMed  CAS  Google Scholar 

  107. Pfizer. Selzentry Prescribing Information. 2012 [cited 2012 Sept 4]; Available from: http://www.selzentry.com/.

  108. Fleishaker DL, et al. Maraviroc, a chemokine receptor-5 antagonist, fails to demonstrate efficacy in the treatment of patients with rheumatoid arthritis in a randomized, double-blind placebo-controlled trial. Arthritis Res Ther. 2012;14(1):R11.

    Article  PubMed  CAS  Google Scholar 

  109. Gerlag DM, et al. Preclinical and clinical investigation of a CCR5 antagonist, AZD5672, in patients with rheumatoid arthritis receiving methotrexate. Arthritis Rheum. 2010;62(11):3154–60.

    Article  PubMed  CAS  Google Scholar 

  110. Gladue RP, Brown MF, Zwillich SH. CCR1 antagonists: what have we learned from clinical trials. Curr Top Med Chem. 2010;10(13):1268–77.

    Article  PubMed  CAS  Google Scholar 

  111. Amat M, et al. Pharmacological blockade of CCR1 ameliorates murine arthritis and alters cytokine networks in vivo. Br J Pharmacol. 2006;149(6):666–75.

    Article  PubMed  CAS  Google Scholar 

  112. Gladue RP, et al. CP-481,715, a potent and selective CCR1 antagonist with potential therapeutic implications for inflammatory diseases. J Biol Chem. 2003;278(42):40473–80.

    Article  PubMed  CAS  Google Scholar 

  113. Haringman JJ, et al. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis. Ann Rheum Dis. 2003;62(8):715–21.

    Article  PubMed  CAS  Google Scholar 

  114. Vergunst CE, et al. MLN3897 plus methotrexate in patients with rheumatoid arthritis: safety, efficacy, pharmacokinetics, and pharmacodynamics of an oral CCR1 antagonist in a phase IIa, double-blind, placebo-controlled, randomized, proof-of-concept study. Arthritis Rheum. 2009;60(12):3572–81.

    Article  PubMed  CAS  Google Scholar 

  115. Tak PP, et al. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Annals of the rheumatic diseases, 2012.

  116. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.

    Article  PubMed  CAS  Google Scholar 

  117. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–69.

    PubMed  CAS  Google Scholar 

  118. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev: MMBR. 2011;75(1):50–83.

    Article  PubMed  CAS  Google Scholar 

  119. Schett G, et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum. 2000;43(11):2501–12.

    Article  PubMed  CAS  Google Scholar 

  120. Cruz CD, et al. Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats. Pain. 2005;116(3):411–9.

    Article  PubMed  CAS  Google Scholar 

  121. Singh K, et al. ERK-dependent T cell receptor threshold calibration in rheumatoid arthritis. J Immunol. 2009;183(12):8258–67.

    Article  PubMed  CAS  Google Scholar 

  122. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239–52.

    Article  PubMed  CAS  Google Scholar 

  123. Han Z, et al. Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther. 1999;291(1):124–30.

    PubMed  CAS  Google Scholar 

  124. Guma M, et al. JNK-1 deficiency limits macrophage-mediated antigen-induced arthritis. Arthritis Rheum. 2011;63(6):1603–12.

    Article  PubMed  CAS  Google Scholar 

  125. Guma M, et al. JNK1 controls mast cell degranulation and IL-1{beta} production in inflammatory arthritis. Proc Natl Acad Sci U S A. 2010;107(51):22122–7.

    Article  PubMed  CAS  Google Scholar 

  126. Hammaker D, Firestein GS. "Go upstream, young man": lessons learned from the p38 saga. Ann Rheum Dis. 2010;69 Suppl 1:i77–82.

    Article  PubMed  CAS  Google Scholar 

  127. Derijard B, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995;267(5198):682–5.

    Article  PubMed  CAS  Google Scholar 

  128. Tournier C, et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 2001;15(11):1419–26.

    Article  PubMed  CAS  Google Scholar 

  129. Fremin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 2010;3:8.

    Article  PubMed  CAS  Google Scholar 

  130. Wallace EM, et al. Progress towards therapeutic small molecule MEK inhibitors for use in cancer therapy. Curr Top Med Chem. 2005;5(2):215–29.

    Article  PubMed  CAS  Google Scholar 

  131. Thiel MJ, et al. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum. 2007;56(10):3347–57.

    Article  PubMed  CAS  Google Scholar 

  132. Sundarrajan M, et al. Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum. 2003;48(9):2450–60.

    Article  PubMed  CAS  Google Scholar 

  133. Inoue T, et al. Regulation of JNK by MKK-7 in fibroblast-like synoviocytes. Arthritis Rheum. 2006;54(7):2127–35.

    Article  PubMed  CAS  Google Scholar 

  134. Lee SI, et al. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-Terminal kinase pathway. Arthritis Res Ther. 2012;14(1):R38.

    Article  PubMed  CAS  Google Scholar 

  135. Inoue T, et al. Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis. Proc Natl Acad Sci U S A. 2006;103(14):5484–9.

    Article  PubMed  CAS  Google Scholar 

  136. Yoshizawa T, et al. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. J Immunol. 2009;183(2):1360–7.

    Article  PubMed  CAS  Google Scholar 

  137. O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nature reviews. Drug Discov. 2006;5(7):549–63.

    Article  CAS  Google Scholar 

  138. Pesu M, et al. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223:132–42.

    Article  PubMed  CAS  Google Scholar 

  139. Milici AJ, et al. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther. 2008;10(1):R14.

    Article  PubMed  CAS  Google Scholar 

  140. Kremer JM, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: Results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.

    Article  PubMed  CAS  Google Scholar 

  141. Fleischmann R, et al. Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum. 2012;64(3):617–29.

    Article  PubMed  CAS  Google Scholar 

  142. Fleischmann R, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367(6):495–507.

    Article  PubMed  CAS  Google Scholar 

  143. van Vollenhoven RF, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367(6):508–19. A 12-month, large, multicenter, international phase III trial of tofacitinib with methotrexate compared to placebo or adalimumab in active RA also found significant improvement in RA compared to placebo and similar efficacy to adalimumab.

    Article  PubMed  CAS  Google Scholar 

  144. Ghosh D, Tsokos GC. Spleen tyrosine kinase: an Src family of non-receptor kinase has multiple functions and represents a valuable therapeutic target in the treatment of autoimmune and inflammatory diseases. Autoimmunity. 2010;43(1):48–55.

    Article  PubMed  CAS  Google Scholar 

  145. Cha HS, et al. A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes. J Pharmacol Exp Ther. 2006;317(2):571–8.

    Article  PubMed  CAS  Google Scholar 

  146. Pine PR, et al. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin Immunol. 2007;124(3):244–57.

    Article  PubMed  CAS  Google Scholar 

  147. Weinblatt ME, et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum. 2008;58(11):3309–18.

    Article  PubMed  CAS  Google Scholar 

  148. Weinblatt ME, et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med. 2010;363(14):1303–12.

    Article  PubMed  CAS  Google Scholar 

  149. Genovese MC, et al. An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: a three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. Arthritis Rheum. 2011;63(2):337–45.

    Article  PubMed  CAS  Google Scholar 

  150. Pamuk ON, Tsokos GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther. 2010;12(6):222.

    Article  PubMed  CAS  Google Scholar 

  151. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol. 2001;2(9):764–6.

    Article  PubMed  CAS  Google Scholar 

  152. Krishnan S, et al. Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells. J Immunol. 2008;181(11):8145–52.

    PubMed  CAS  Google Scholar 

  153. Bahjat FR, et al. An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum. 2008;58(5):1433–44.

    Article  PubMed  CAS  Google Scholar 

  154. Demetri GD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.

    Article  PubMed  CAS  Google Scholar 

  155. Druker BJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  PubMed  CAS  Google Scholar 

  156. Distler JH, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56(1):311–22.

    Article  PubMed  CAS  Google Scholar 

  157. Varga J, Whitfield ML. Transforming growth factor-beta in systemic sclerosis (scleroderma). Front Biosci. 2009;1:226–35.

    Google Scholar 

  158. Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology. 2008;47 Suppl 5:v2–4.

    Article  PubMed  CAS  Google Scholar 

  159. Akhmetshina A, et al. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 2009;60(1):219–24.

    Article  PubMed  CAS  Google Scholar 

  160. Pope J, et al. Imatinib in active diffuse cutaneous systemic sclerosis: Results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum. 2011;63(11):3547–51.

    Article  PubMed  CAS  Google Scholar 

  161. Khanna D, et al. A one-year, phase I/IIa, open-label pilot trial of imatinib mesylate in the treatment of systemic sclerosis-associated active interstitial lung disease. Arthritis Rheum. 2011;63(11):3540–6.

    Article  PubMed  CAS  Google Scholar 

  162. Spiera RF, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis. 2011;70(6):1003–9.

    Article  PubMed  CAS  Google Scholar 

  163. Akashi N, et al. Comparative suppressive effects of tyrosine kinase inhibitors imatinib and nilotinib in models of autoimmune arthritis. Mod rheumatol/ Jpn Rheum Assoc. 2011;21(3):267–75.

    CAS  Google Scholar 

  164. Koyama K, et al. Imatinib mesylate both prevents and treats the arthritis induced by type II collagen antibody in mice. Mod rheumatol/ Jpn Rheum Assoc. 2007;17(4):306–10.

    CAS  Google Scholar 

  165. Paniagua RT, et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Investig. 2006;116(10):2633–42.

    PubMed  CAS  Google Scholar 

  166. Eklund KK, et al. Maintained efficacy of the tyrosine kinase inhibitor imatinib mesylate in a patient with rheumatoid arthritis. J Clin Rheumatol: Pract Rep Rheum Muscoskel Dis. 2008;14(5):294–6.

    Google Scholar 

  167. Eklund KK, Joensuu H. Treatment of rheumatoid arthritis with imatinib mesylate: clinical improvement in three refractory cases. Ann Med. 2003;35(5):362–7.

    Article  PubMed  CAS  Google Scholar 

  168. Vernon MR, Pearson L, Atallah E. Resolution of rheumatoid arthritis symptoms with imatinib mesylate. J Clin Rheumatol: Pract Rep Rheum Muscoskel Dis. 2009;15(5):267.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa K. Tarrant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, J.L., Serafin, D.S., Timoshchenko, R.G. et al. Cellular Targeting in Autoimmunity. Curr Allergy Asthma Rep 12, 495–510 (2012). https://doi.org/10.1007/s11882-012-0307-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-012-0307-y

Keywords

Navigation