Skip to main content

Advertisement

Log in

The Relationship of X-Linked Primary Immune Deficiencies and Autoimmunity

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

It is well-known that autoimmunity is significantly more prevalent in females. Growing evidence indicates that genes located on the X chromosome may play a role in autoimmunity and immune dysregulation, as also indicated by the frequent association of autoimmune phenomena in patients with X-linked primary immune deficiencies (PIDs). Hence, this group of genetic disorders is of particular interest to study PID-causing genes in the setting of more complex autoimmune disorders. This review focuses on the mechanisms leading to the autoimmune phenomena that are associated with the different X-linked PIDs, and on the intriguing interplay between immune dysregulation and immune deficiency in this unique setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carneiro-Sampaio M, Coutinho A: Tolerance and autoimmunity: lessons at the bedside of primary immunodeficiencies. Adv Immunol 2007, 95:51–82.

    Article  CAS  PubMed  Google Scholar 

  2. Notarangelo LD, Gambineri E, Badolato R: Immunodeficiencies with autoimmune consequences. Adv Immunol 2006, 89:321–370.

    Article  CAS  PubMed  Google Scholar 

  3. • Invernizzi P, Pasini S, Selmi C, et al.: Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 2009, 33:12–16. This review addresses the yet-to-be-answered enigma of the higher prevalence of autoimmune diseases in females by thoroughly analyzing relevant biological phenomena such as X chromosome inactivation, microchimerism, the role of sex hormones, and X chromosome monosomies.

  4. •• International Union of Immunological Societies Expert Committee on Primary Immunodeficiences; Notarangelo LD, Fischer A, Geha RS, et al.: Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol 2009, 124:1161–1178. This report provides the updated classification of PIDs that was compiled by the International Union of Immunological Societies Expert Committee on Primary Immunodeficiencies in June 2009. It includes novel forms of PID that have been recently discovered and additional pathophysiology mechanisms that account for PID in humans that have been unraveled.

    Google Scholar 

  5. Torgerson TR, Ochs HD: Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol 2007, 120:744–750.

    Article  CAS  PubMed  Google Scholar 

  6. Lyon MF, Peters J, Glenister PH, et al.: The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci U S A 1990, 87:2433–2437.

    Article  CAS  PubMed  Google Scholar 

  7. Chatila TA, Blaeser F, Ho N, et al.: JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic dysregulation syndrome. J Clin Invest 2000, 106:R75–R81.

    Article  CAS  PubMed  Google Scholar 

  8. Brunkow ME, Jeffery EW, Hjerrild KA, et al.: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001, 27:68–73.

    Article  CAS  PubMed  Google Scholar 

  9. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 2003, 4:330–336.

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune tolerance. Cell 2008, 133:775–787.

    Article  CAS  PubMed  Google Scholar 

  11. Rao A, Kamani N, Filipovich A, et al.: Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood 2007, 109:383–385.

    Article  CAS  PubMed  Google Scholar 

  12. Torgerson TR, Linane A, Moes N, et al.: Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 2007, 132:1705–1717.

    Article  CAS  PubMed  Google Scholar 

  13. Caudy AA, Reddy ST, Chatila T, et al.: CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 2007, 119:482–487.

    Article  CAS  PubMed  Google Scholar 

  14. Notarangelo LD, Miao CH, Ochs HD: Wiskott-Aldrich syndrome. Curr Opin Hematol 2008, 15:30–36.

    Article  CAS  PubMed  Google Scholar 

  15. Thrasher AJ, Burns SO: WASP: a key immunological multitasker. Nat Rev Immunol 2010, 10:182–192.

    Article  CAS  PubMed  Google Scholar 

  16. Albert MH, Bittner TC, Nonoyama S, et al.: X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood 2010, 115:3231–3238.

    Article  CAS  PubMed  Google Scholar 

  17. Devriendt K, Kim AS, Mathijs G, et al.: Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 2001, 27:313–317.

    Article  CAS  PubMed  Google Scholar 

  18. Adriani M, Aoki J, Horai R, et al.: Impaired in vitro regulatory T cell function associated with Wiskott-Aldrich syndrome. Clin Immunol 2007, 124:41–48.

    Article  CAS  PubMed  Google Scholar 

  19. Marangoni F, Trifari S, Scaramuzza S, et al.: WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med 2007, 204:369–380.

    Article  CAS  PubMed  Google Scholar 

  20. Ma CS, Nichols KE, Tangye SG: Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007, 25:337–379.

    Article  CAS  PubMed  Google Scholar 

  21. Nichols KE, Ma CS, Cannons JL, et al.: Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 2005, 203:180–199.

    Article  CAS  PubMed  Google Scholar 

  22. Rigaud S, Fondaneche MC, Lambert N, et al.: XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 2006, 444:110–114.

    Article  CAS  PubMed  Google Scholar 

  23. Crotty S, Kersh EN, Cannons J, et al.: SAP is required for generating long-term humoral immunity. Nature 2003, 421:282–287.

    Article  CAS  PubMed  Google Scholar 

  24. Holland SM: Chronic granulomatous disease. Clin Rev Allergy Immunol 2010, 38:3–10.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenzweig SD, Holland SM: Phagocyte immunodeficiencies and their infections. J Allergy Clin Immunol 2004, 113:620–626.

    Article  CAS  PubMed  Google Scholar 

  26. Kang EM, Malech HL: Advances in treatment for chronic granulomatous disease. Immunol Res 2009, 43:77–84.

    Article  PubMed  Google Scholar 

  27. Kang EM, Choi U, Theobald N, et al.: Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 2010, 115:783–791.

    Article  CAS  PubMed  Google Scholar 

  28. Cale CM, Morton L, Goldblatt D: Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 2007, 148:79–84.

    CAS  PubMed  Google Scholar 

  29. De Ravin SS, Naumann N, Cowen EW, et al.: Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 2008, 122:1097–1103.

    Article  PubMed  Google Scholar 

  30. Schäppi M, Jaquet V, Belli D, Krause K-H: Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 2008, 30:255–271.

    Article  PubMed  Google Scholar 

  31. Bleesing JJ, Souto-Carneiro MM, Savage WJ, et al.: Patients with chronic granulomatous disease have a reduced peripheral blood memory B cell compartment. J Immunol 2006, 176:7096–7103.

    CAS  PubMed  Google Scholar 

  32. George-Chandy A, Nordstrom I, Nygren E, et al.: Th17 development and autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol 2008, 38:1118–1126.

    Article  CAS  PubMed  Google Scholar 

  33. Sanford AN, Suriano AR, Herche D, et al.: Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology (Oxford) 2006, 45:178–181.

    Article  CAS  Google Scholar 

  34. Notarangelo LD, Lanzi G, Peron S, Durandy A: Defects of class-switch recombination. J Allergy Clin Immunol 2006, 117:855–864.

    Article  CAS  PubMed  Google Scholar 

  35. Jesus A, Duarte A, Oliveira J: Autoimmunity in hyper-IgM syndrome. J Clin Immunol 2008, 28:62–66.

    Article  Google Scholar 

  36. Etzioni A, Ochs HD: The hyper IgM syndrome—an evolving story. Pediatr Res 2004, 56:519–525.

    Article  CAS  PubMed  Google Scholar 

  37. Jain A, Atkinson TP, Lipsky PE, et al.: Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest 1999, 103:1151–1158.

    Article  CAS  PubMed  Google Scholar 

  38. White AJ, Withers DR, Parnell SM, et al.: Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur J Immunol 2008, 38:942–947.

    Article  CAS  PubMed  Google Scholar 

  39. Kumanogoh A, Wang X, Lee I, et al.: Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol 2001, 166:353–360.

    CAS  PubMed  Google Scholar 

  40. Herve M, Isnardi I, Ng YS, et al.: CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J Exp Med 2007, 204:1583–1593.

    Article  CAS  PubMed  Google Scholar 

  41. Jain A, Ma CA, Liu S, et al.: Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001, 2:223–228.

    Article  CAS  PubMed  Google Scholar 

  42. Zonana J, Elder ME, Schneider LC, et al.: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000, 67:1555–1562.

    Article  CAS  PubMed  Google Scholar 

  43. Orange JS, Levy O, Geha RS: Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kappaB activation. Immunol Rev 2005, 203:21–37.

    Article  CAS  PubMed  Google Scholar 

  44. Friedrichs F, Henckaerts L, Vermeire S, et al.: The Crohn’s disease susceptibility gene DLG5 as a member of the CARD interaction network. J Mol Med 2008, 86:423–432.

    Article  CAS  PubMed  Google Scholar 

  45. Toubi E, Shoenfeld Y: Toll-like receptors and their role in the development of autoimmune diseases. Autoimmunity 2004, 37:183–188.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang B, Wang Z, Ding J, et al.: NF-kappaB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells. J Biol Chem 2006, 81:38617–38624.

    Article  Google Scholar 

  47. Zhu M, Chin RK, Christiansen PA, et al.: NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Invest 2006, 116:2964–2971.

    Article  CAS  PubMed  Google Scholar 

  48. Tsukada S, Saffran DC, Rawlings DJ, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993, 72:279–290.

    Article  CAS  PubMed  Google Scholar 

  49. Vetrie D, Vorechovsky I, Sideras P, et al.: The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993, 361:226–233.

    Article  CAS  PubMed  Google Scholar 

  50. Winkelstein JA, Marino MC, Lederman HM, et al.: X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 2006, 85:193–202.

    Article  Google Scholar 

  51. Howard V, Greene JM, Pahwa S, et al.: The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol 2006, 118:201–208.

    Article  CAS  PubMed  Google Scholar 

  52. Verbruggen G, De Backer S, Deforce D, et al.: X linked agammaglobulinaemia and rheumatoid arthritis. Ann Rheum Dis 2005, 64:1075–1078.

    Article  CAS  PubMed  Google Scholar 

  53. Knight AK, Cunningham-Rundles C: Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmun Rev 2006, 5:156–159.

    Article  CAS  PubMed  Google Scholar 

  54. Kubo T, Uchida Y, Watanabe Y, et al.: Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity. J Exp Med 2009, 206:1971–1982.

    Article  CAS  PubMed  Google Scholar 

  55. Lee KG, Xu S, Wong ET, et al.: Bruton’s tyrosine kinase separately regulates NFkappaB p65RelA activation and cytokine interleukin (IL)-10/IL-12 production in TLR9-stimulated B Cells. J Biol Chem 2008, 283:11189–11198.

    Article  CAS  PubMed  Google Scholar 

  56. Yong PF, Workman S, Wahid F, et al.: Selective deficits in blood dendritic cell subsets in common variable immunodeficiency and X-linked agammaglobulinaemia but not specific polysaccharide antibody deficiency. Clin Immunol 2008, 127:34–42.

    Article  CAS  PubMed  Google Scholar 

  57. Di Nunzio S, Cecconi M, Passerini L, et al.: Wild-type FOXP3 is selectively active in CD4 + CD25hi regulatory T cells of healthy female carriers of different FOXP3 mutations. Blood 2009, 114:4138–4141.

    Article  PubMed  Google Scholar 

  58. Su MA, Stenerson M, Liu W, et al.: The role of X-linked FOXP3 in the autoimmune susceptibility of Turner syndrome patients. Clin Immunol 2009, 131:139–144.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai M. Pessach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessach, I.M. The Relationship of X-Linked Primary Immune Deficiencies and Autoimmunity. Curr Allergy Asthma Rep 10, 311–319 (2010). https://doi.org/10.1007/s11882-010-0127-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-010-0127-x

Keywords

Navigation