Skip to main content

Advertisement

Log in

Genome-wide association studies in the genetics of asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The field of asthma genetics has progressed rapidly over the past decade, implicating many genes and variants in the etiology of this complex disease. However, many of these factors have failed to replicate consistently, indicating a high false-positive rate and/or insufficient power for the detection of small effects. Technological limitations also have restricted the potential to detect novel mechanisms, fostering a dependence on existing knowledge. Since its inception almost 4 years ago, genome-wide association (GWA) has transformed genetic studies of multifactorial traits and yielded unprecedented insights into mechanisms of causation. Asthma is at the forefront of this revolution, as it uses GWA to map not only genetic determinants of clinical status but also transcript and protein abundance and structural (copy number) variants that may underlie disease susceptibility. In this review, we consider the applications of GWA data to asthma and describe the factors likely to influence the procedure’s success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Duffy DL, Martin NG, Battistutta D, et al.: Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis 1990, 142:1351–1358.

    PubMed  CAS  Google Scholar 

  2. Hopp RJ, Bewtra AK, Watt GD, et al.: Genetic analysis of allergic disease in twins. J Allergy Clin Immunol 1984, 73:265–270.

    Article  PubMed  CAS  Google Scholar 

  3. Nieminen MM, Kaprio J, Koskenvuo M: A population-based study of bronchial asthma in adult twin pairs. Chest 1991, 100:70–75.

    Article  PubMed  CAS  Google Scholar 

  4. Ober C, Hoffjan S: Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006, 7:95–100.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang J, Pare PD, Sandford AJ: Recent advances in asthma genetics. Respir Res 2008, 9:4.

    Article  PubMed  CAS  Google Scholar 

  6. Vercelli D: Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 2008, 8:169–182.

    Article  PubMed  CAS  Google Scholar 

  7. Cookson W: The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 2004, 4:978–988.

    Article  PubMed  CAS  Google Scholar 

  8. Hindorff L, Junkins H, Manolio T: A catalog of published genome-wide association studies. Available at http://www.genome.gov/26525384. Accessed July 31, 2008.

  9. Moffatt MF, Kabesch M, Liang L, et al.: Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448:470–473.

    Article  PubMed  CAS  Google Scholar 

  10. Visscher PM, Andrew T, Nyholt DR: Genome-wide association studies of quantitative traits with related individuals: little (power) lost but much to be gained. Eur J Hum Genet 2008, 16:387–390.

    Article  PubMed  CAS  Google Scholar 

  11. Easton DF, Pooley KA, Dunning AM, et al.: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447:1087–1093.

    Article  PubMed  CAS  Google Scholar 

  12. Chunder N, Mandal S, Roy A, et al.: Differential association of BRCA1 and BRCA2 genes with some breast cancer-associated genes in early and late onset breast tumors. Ann Surg Oncol 2004, 11:1045–1055.

    Article  PubMed  Google Scholar 

  13. Hall JM, Lee MK, Newman B, et al.: Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990, 250:1684–1689.

    Article  PubMed  CAS  Google Scholar 

  14. Warner E, Foulkes W, Goodwin P, et al.: Prevalence and penetrance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J Natl Cancer Inst 1999, 91:1241–1247.

    Article  PubMed  CAS  Google Scholar 

  15. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast Cancer Linkage Consortium. Lancet 1997, 349:1505–1510.

    Article  PubMed  Google Scholar 

  16. Lakhani SR, Gusterson BA, Jacquemier J, et al.: The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res 2000, 6:782–789.

    PubMed  CAS  Google Scholar 

  17. Cookson WO, Ubhi B, Lawrence R, et al.: Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet 2001, 27:372–373.

    Article  PubMed  CAS  Google Scholar 

  18. Lammintausta K, Kalimo K, Raitala R, Forsten Y: Prognosis of atopic dermatitis. A prospective study in early adulthood. Int J Dermatol 1991, 30:563–568.

    PubMed  CAS  Google Scholar 

  19. Linna O, Kokkonen J, Lahtela P, Tammela O: Ten-year prognosis for generalized infantile eczema. Acta Paediatr 1992, 81:1013–1016.

    Article  PubMed  CAS  Google Scholar 

  20. Gustafsson D, Sjoberg O, Foucard T: Development of allergies and asthma in infants and young children with atopic dermatitis—a prospective follow-up to 7 years of age. Allergy 2000, 55:240–245.

    Article  PubMed  CAS  Google Scholar 

  21. Lichtenstein P, Svartengren M: Genes, environments, and sex: factors of importance in atopic diseases in 7–9-year-old Swedish twins. Allergy 1997, 52:1079–1086.

    Article  PubMed  CAS  Google Scholar 

  22. van Beijsterveldt CE, Boomsma DI: Genetics of parentally reported asthma, eczema and rhinitis in 5-yr-old twins. Eur Respir J 2007, 29:516–521.

    Article  PubMed  Google Scholar 

  23. Marenholz I, Nickel R, Ruschendorf F, et al.: Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol 2006, 118:866–871.

    Article  PubMed  CAS  Google Scholar 

  24. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al.: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006, 38:441–446.

    Article  PubMed  CAS  Google Scholar 

  25. Weidinger S, Illig T, Baurecht H, et al.: Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 2006, 118:214–219.

    Article  PubMed  CAS  Google Scholar 

  26. Weidinger S, Rodriguez E, Stahl C, et al.: Filaggrin mutations strongly predispose to early-onset and extrinsic atopic dermatitis. J Invest Dermatol 2007, 127:724–726.

    Article  PubMed  CAS  Google Scholar 

  27. Ying S, Meng Q, Corrigan CJ, Lee TH: Lack of filaggrin expression in the human bronchial mucosa. J Allergy Clin Immunol 2006, 118:1386–1388.

    Article  PubMed  CAS  Google Scholar 

  28. Rogers AJ, Celedon JC, Lasky-Su JA, et al.: Filaggrin mutations confer susceptibility to atopic dermatitis but not to asthma. J Allergy Clin Immunol 2007, 120:1332–1337.

    Article  PubMed  CAS  Google Scholar 

  29. Lettice LA, Heaney SJ, Purdie LA, et al.: A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 2003, 12:1725–1735.

    Article  PubMed  CAS  Google Scholar 

  30. Dixon AL, Liang L, Moffatt MF, et al.: A genome-wide association study of global gene expression. Nat Genet 2007, 39:1202–1207.

    Article  PubMed  CAS  Google Scholar 

  31. Dong C, Qian Z, Jia P, et al.: Gene-centric characteristics of genome-wide association studies. PLoS ONE 2007, 2:e1262.

    Article  PubMed  Google Scholar 

  32. Evans DM, Barrett JC, Cardon LR: To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies? Eur J Hum Genet 2008, 16:718–723.

    Article  PubMed  CAS  Google Scholar 

  33. Li M, Li C, Guan W: Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet 2008, 16:635–643.

    Article  PubMed  CAS  Google Scholar 

  34. Bhangale TR, Rieder MJ, Nickerson DA: Estimating coverage and power for genetic association studies using near-complete variation data. Nat Genet 2008, 40:841–843.

    Article  PubMed  CAS  Google Scholar 

  35. Duan S, Huang RS, Zhang W, et al.: Genetic architecture of transcript-level variation in humans. Am J Hum Genet 2008, 82:1101–1113.

    Article  PubMed  CAS  Google Scholar 

  36. Smith CA, Harrison DJ: Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 1997, 350:630–633.

    Article  PubMed  CAS  Google Scholar 

  37. Salam MT, Lin PC, Avol EL, et al.: Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 2007, 62:1050–1057.

    Article  PubMed  Google Scholar 

  38. Madore AM, Tremblay K, Hudson TJ, Laprise C: Replication of an association between 17q21 SNPs and asthma in a French-Canadian familial collection. Hum Genet 2008, 123:93–95.

    Article  PubMed  CAS  Google Scholar 

  39. Galanter J, Choudhry S, Eng C, et al.: ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 2008, 177:1194–1200.

    Article  PubMed  CAS  Google Scholar 

  40. Hjelmqvist L, Tuson M, Marfany G, et al.: ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol 2002, 3: RESEARCH0027.

    Google Scholar 

  41. Hui J, Oka A, James A, et al.: A genome-wide association scan for asthma in a general Australian population. Hum Genet 2008, 123:297–306.

    Article  PubMed  CAS  Google Scholar 

  42. Kruglyak L: The use of a genetic map of biallelic markers in linkage studies. Nat Genet 1997, 17:21–24.

    Article  PubMed  CAS  Google Scholar 

  43. Lander ES, Linton LM, Birren B, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860–921.

    Article  PubMed  CAS  Google Scholar 

  44. Ionita-Laza I, Perry GH, Raby BA, et al.: On the analysis of copy-number variations in genome-wide association studies: a translation of the family-based association test. Genet Epidemiol 2008, 32:273–284.

    Article  PubMed  Google Scholar 

  45. Lefranc MP, Rabbitts TH: Two tandemly organized human genes encoding the T-cell gamma constant-region sequences show multiple rearrangement in different T-cell types. Nature 1985, 316:464–466.

    Article  PubMed  CAS  Google Scholar 

  46. Ober C, Tan Z, Sun Y, et al.: Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med 2008, 358:1682–1691.

    Article  PubMed  CAS  Google Scholar 

  47. Chupp GL, Lee CG, Jarjour N, et al.: A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 2007, 357:2016–2027.

    Article  PubMed  CAS  Google Scholar 

  48. Ioannidis JP: Non-replication and inconsistency in the genome-wide association setting. Hum Hered 2007, 64:203–213.

    Article  PubMed  CAS  Google Scholar 

  49. Patsopoulos NA, Tatsioni A, Ioannidis JP: Claims of sex differences: an empirical assessment in genetic associations. JAMA 2007, 298:880–893.

    Article  PubMed  CAS  Google Scholar 

  50. Klein RJ, Zeiss C, Chew EY, et al.: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308:385–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saffron A. G. Willis-Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willis-Owen, S.A.G., Cookson, W.O. & Moffatt, M.F. Genome-wide association studies in the genetics of asthma. Curr Allergy Asthma Rep 9, 3–9 (2009). https://doi.org/10.1007/s11882-009-0001-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0001-x

Keywords

Navigation