Skip to main content

Advertisement

Log in

The spectrum of monogenic autoinflammatory syndromes: Understanding disease mechanisms and use of targeted therapies

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Monogenic autoinflammatory diseases encompass a distinct and growing clinical entity of multisystem inflammatory diseases with known genetic defects in the innate immune system. The diseases present clinically with episodes of seemingly unprovoked inflammation (fever, rashes, and elevation of acute phase reactants). Understanding the genetics has led to discovery of new molecules involved in recognizing exogenous and endogenous danger signals, and the inflammatory response to these stimuli. These advances have furthered understanding of innate inflammatory pathways and spurred collaborative research in rheumatology and infectious diseases. The pivotal roles of interleukin (IL)-1β in cryopyrin-associated periodic syndromes, tumor necrosis factor (TNF) in TNF receptor-associated periodic syndrome, and links to inflammatory cytokine dysregulation in other monogenic autoinflammatory diseases have resulted in effective therapies targeting proinflammatory cytokines IL-1β and TNF and uncovered other new potential targets for anti-inflammatory therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. A candidate gene for familial Mediterranean fever. The French FMF Consortium. Nat Genet 1997, 17:25–31.

  2. The International FMF Consortium: Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 1997, 90:797–807.

    Article  Google Scholar 

  3. McDermott MF, Aksentijevich I, Galon J, et al.: Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999, 97:133–144.

    Article  PubMed  CAS  Google Scholar 

  4. Drenth JP, van der Meer JW: Hereditary periodic fever. N Engl J Med 2001, 345:1748–1757.

    Article  PubMed  CAS  Google Scholar 

  5. Houten SM, Kuis W, Duran M, et al.: Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Genet 1999, 22:175–177.

    Article  PubMed  CAS  Google Scholar 

  6. Aksentijevich I, Nowak M, Mallah M, et al.: De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 2002, 46:3340–3348.

    Article  PubMed  CAS  Google Scholar 

  7. Feldmann J, Prieur AM, Quartier P, et al.: Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002, 71:198–203.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman HM, Mueller JL, Broide DH, et al.: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 2001, 29:301–305.

    Article  PubMed  CAS  Google Scholar 

  9. Wise CA, Gillum JD, Seidman CE, et al.: Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet 2002, 11:961–969.

    Article  PubMed  CAS  Google Scholar 

  10. Miceli-Richard C, Lesage S, Rybojad M, et al.: CARD15 mutations in Blau syndrome. Nat Genet 2001, 29:19–20.

    Article  PubMed  CAS  Google Scholar 

  11. Kanazawa N, Okafuji I, Kambe N, et al.: Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 2005, 105:1195–1197.

    Article  PubMed  CAS  Google Scholar 

  12. Ferguson PJ, Chen S, Tayeh MK, et al.: Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet 2005, 42:551–557.

    Article  PubMed  CAS  Google Scholar 

  13. Lidar M, Livneh A: Familial Mediterranean fever: clinical, molecular and management advancements. Neth J Med 2007, 65:318–324.

    PubMed  CAS  Google Scholar 

  14. Touitou I, Sarkisian T, Medlej-Hashim M, et al.: Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum 2007, 56:1706–1712.

    Article  PubMed  Google Scholar 

  15. Gershoni-Baruch R, Brik R, Zacks N, et al.: The contribution of genotypes at the MEFV and SAA1 loci to amyloidosis and disease severity in patients with familial Mediterranean fever. Arthritis Rheum 2003, 48:1149–1155.

    Article  PubMed  Google Scholar 

  16. Infevers: an online database for autoinflammatory mutations. Available at http://fmf.igh.cnrs.fr/ISSAID/infevers/. Accessed February 2008.

  17. Tchernitchko DO, Gerard-Blanluet M, Legendre M, et al.: Intrafamilial segregation analysis of the p.E148Q MEFV allele in familial Mediterranean fever. Ann Rheum Dis 2006, 65:1154–1157.

    Article  PubMed  CAS  Google Scholar 

  18. Chae JJ, Komarow HD, Cheng J, et al.: Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 2003, 11:591–604.

    Article  PubMed  CAS  Google Scholar 

  19. Martinon F, Burns K, Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002, 10:417–426.

    Article  PubMed  CAS  Google Scholar 

  20. Chae JJ, Wood G, Masters SL, et al.: The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci U S A 2006, 103:9982–9987.

    Article  PubMed  CAS  Google Scholar 

  21. Yu JW, Fernandes-Alnemri T, Datta P, et al.: Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 2007, 28:214–227.

    Article  PubMed  CAS  Google Scholar 

  22. Bhat A, Naguwa SM, Gershwin ME: Genetics and new treatment modalities for familial Mediterranean fever. Ann N Y Acad Sci 2007, 1110:201–208.

    Article  PubMed  CAS  Google Scholar 

  23. Williamson LM, Hull D, Mehta R, et al.: Familial Hibernian fever. Q J Med 1982, 51:469–480.

    PubMed  CAS  Google Scholar 

  24. Hull KM, Shoham N, Chae JJ, et al.: The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations. Curr Opin Rheumatol 2003, 15:61–69.

    Article  PubMed  CAS  Google Scholar 

  25. Lobito AA, Kimberley FC, Muppidi JR, et al.: Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 2006, 108:1320–1327.

    Article  PubMed  CAS  Google Scholar 

  26. Drewe E, Huggins ML, Morgan AG, et al.: Treatment of renal amyloidosis with etanercept in tumour necrosis factor receptor-associated periodic syndrome. Rheumatology (Oxford) 2004, 43:1405–1408.

    Article  CAS  Google Scholar 

  27. Simon A, Bodar EJ, van der Hilst JC, et al.: Beneficial response to interleukin 1 receptor antagonist in traps. Am J Med 2004, 117:208–210.

    Article  PubMed  CAS  Google Scholar 

  28. Kile RL, Rusk HA: A case of cold urticaria with unusual family history. JAMA 1940, 114:1067–1068.

    Google Scholar 

  29. Muckle TJ, Wells M: Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q J Med 1962, 31:235–248.

    PubMed  CAS  Google Scholar 

  30. Muckle TJ: The ‘Muckle-Wells’ syndrome. Br J Dermatol 1979, 100:87–92.

    Article  PubMed  CAS  Google Scholar 

  31. Ansell MB, Bywaters EG, Elderkin FM: Familial arthropathy with rash, uveitis and mental retardation. Proc R Soc Med 1975, 68:584–585.

    PubMed  CAS  Google Scholar 

  32. Prieur AM, Griscelli C: Arthropathy with rash, chronic meningitis, eye lesions, and mental retardation. J Pediatr 1981, 99:79–83.

    Article  PubMed  CAS  Google Scholar 

  33. Hill SC, Namde M, Dwyer A, et al.: Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol 2007, 37:145–152.

    Article  PubMed  Google Scholar 

  34. Aksentijevich I, Putnam D, Remmers EF, et al.: The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 2007, 56:1273–1285.

    Article  PubMed  CAS  Google Scholar 

  35. Goldbach-Mansky R, Dailey NJ, Canna SW, et al.: Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006, 355:581–592.

    Article  PubMed  CAS  Google Scholar 

  36. Prieur AM, Griscelli C, Lampert F, et al.: A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl 1987, 66:57–68.

    Article  PubMed  CAS  Google Scholar 

  37. Neven B, Callebaut I, Prieur AM, et al.: Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 2004, 103:2809–2815.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman HM, Gregory SG, Mueller JL, et al.: Fine structure mapping of CIAS1: identification of an ancestral haplotype and a common FCAS mutation, L353P. Hum Genet 2003, 112:209–216.

    PubMed  CAS  Google Scholar 

  39. Saito M, Nishikomori R, Kambe N, et al.: Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 2008, 111:2132–2141.

    Article  PubMed  CAS  Google Scholar 

  40. Jesus AA, Silva CA, Segundo GR, et al.: Phenotypegenotype analysis of cryopyrin-associated periodic syndromes (CAPS): description of a rare non-exon 3 and a novel CIAS1 missense mutation. J Clin Immunol 2007, 28:134–138.

    Article  PubMed  CAS  Google Scholar 

  41. Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298–300.

    Article  PubMed  CAS  Google Scholar 

  42. McDermott MF, Tschopp J: From inflammasomes to fevers, crystals and hypertension: how basic research explains inflammatory diseases. Trends Mol Med 2007, 13:381–388.

    Article  PubMed  CAS  Google Scholar 

  43. O’Connor W Jr, Harton JA, Zhu X, et al.: Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J Immunol 2003, 171:6329–6333.

    PubMed  CAS  Google Scholar 

  44. Wang L, Manji GA, Grenier JM, et al.: PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 2002, 277:29874–29880.

    Article  PubMed  CAS  Google Scholar 

  45. Caroli F, Pontillo A, D’Osualdo A, et al.: Clinical and genetic characterization of Italian patients affected by CINCA syndrome. Rheumatology (Oxford) 2007, 46:473–478.

    Article  CAS  Google Scholar 

  46. Hawkins PN, Lachmann HJ, Aganna E, McDermott MF: Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum 2004, 50:607–612.

    Article  PubMed  CAS  Google Scholar 

  47. Hoffman HM, Rosengren S, Boyle DL, et al.: Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 2004, 364:1779–1785.

    Article  PubMed  CAS  Google Scholar 

  48. Hoffman HM, Throne ML, Amar NJ, et al.: Efficacy and safety of rilonacept (IL-1 trap) in cryopyrin-associated periodic fever syndromes (CAPS): results from two sequential placebo-controlled studies. Arthritis Rheum, in press.

  49. Goldbach-Mansky R, Shroff S, Wilson M, et al.: A pilot study to evaluate the safety and efficacy of the long-acting IL-1 inhibitor, rilonacept (IL-1 Trap) in patients with familial cold autoinflammatory syndrome (FCAS). Arthritis Rheum, in press.

  50. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD): Online Mendelian Inheritance in Man, OMIM. Accessed February 8, 2008. Available at http://www.ncbi.nlm.nih.gov/omim.

  51. McTaggart SJ: Isoprenylated proteins. Cell Mol Life Sci 2006, 63:255–267.

    Article  PubMed  CAS  Google Scholar 

  52. Simon A, van der Meer JW: Pathogenesis of familial periodic fever syndromes or hereditary autoinflammatory syndromes. Am J Physiol Regul Integr Comp Physiol 2007, 292:R86–R98.

    PubMed  CAS  Google Scholar 

  53. Frenkel J, Rijkers GT, Mandey SH, et al.: Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum 2002, 46:2794–2803.

    Article  PubMed  CAS  Google Scholar 

  54. Simon A, Drewe E, van der Meer JW, et al.: Simvastatin treatment for inflammatory attacks of the hyperimmunoglobulinemia D and periodic fever syndrome. Clin Pharmacol Ther 2004, 75:476–483.

    Article  PubMed  CAS  Google Scholar 

  55. Bodar EJ, van der Hilst JC, Drenth JP, et al.: Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med 2005, 63:260–264.

    PubMed  CAS  Google Scholar 

  56. Demirkaya E, Caglar MK, Waterham HR, et al.: A patient with hyper-IgD syndrome responding to anti-TNF treatment. Clin Rheumatol 2007, 26:1757–1759.

    Article  PubMed  Google Scholar 

  57. Takada K, Aksentijevich I, Mahadevan V, et al.: Favorable preliminary experience with etanercept in two patients with the hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum 2003, 48:2645–2651.

    Article  PubMed  CAS  Google Scholar 

  58. Lindor NM, Arsenault TM, Solomon H, et al.: A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc 1997, 72:611–615.

    Article  PubMed  CAS  Google Scholar 

  59. Shoham NG, Centola M, Mansfield E, et al.: Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A 2003, 100:13501–13506.

    Article  PubMed  CAS  Google Scholar 

  60. Cortis E, De Benedetti F, Insalaco A, et al.: Abnormal production of tumor necrosis factor (TNF)-alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome [corrected]. J Pediatr 2004, 145:851–855.

    Article  PubMed  Google Scholar 

  61. Rose CD, Wouters CH, Meiorin S, et al.: Pediatric granulomatous arthritis: an international registry. Arthritis Rheum 2006, 54:3337–3344.

    Article  PubMed  Google Scholar 

  62. Blau EB: Familial granulomatous arthritis, iritis, and rash. J Pediatr 1985, 107:689–693.

    Article  PubMed  CAS  Google Scholar 

  63. Becker ML, Rose CD: Blau syndrome and related genetic disorders causing childhood arthritis. Curr Rheumatol Rep 2005, 7:427–433.

    Article  PubMed  CAS  Google Scholar 

  64. Arostegui JI, Arnal C, Merino R, et al.: NOD2 gene-associated pediatric granulomatous arthritis: clinical diversity, novel and recurrent mutations, and evidence of clinical improvement with interleukin-1 blockade in a Spanish cohort. Arthritis Rheum 2007, 56:3805–3813.

    Article  PubMed  CAS  Google Scholar 

  65. Ferguson PJ, El Shanti HI: Autoinflammatory bone disorders. Curr Opin Rheumatol 2007, 19:492–498.

    Article  PubMed  CAS  Google Scholar 

  66. El Shanti HI, Ferguson PJ: Chronic recurrent multifocal osteomyelitis: a concise review and genetic update. Clin Orthop Relat Res 2007, 462:11–19.

    Article  PubMed  Google Scholar 

  67. Medzhitov R: Recognition of microorganisms and activation of the immune response. Nature 2007, 449:819–826.

    Article  PubMed  CAS  Google Scholar 

  68. Ye Z, Ting JP: NLR, the nucleotide-binding domain leucinerich repeat containing gene family. Curr Opin Immunol 2008, 20:3–9.

    PubMed  CAS  Google Scholar 

  69. Schneider DS: Plant immunity and film noir: what gumshoe detectives can teach us about plant-pathogen interactions. Cell 2002, 109:537–540.

    Article  PubMed  CAS  Google Scholar 

  70. James LC, Keeble AH, Khan Z, et al.: Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci U S A 2007, 104:6200–6205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaela Goldbach-Mansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, R.L., Goldbach-Mansky, R. The spectrum of monogenic autoinflammatory syndromes: Understanding disease mechanisms and use of targeted therapies. Curr Allergy Asthma Rep 8, 288–298 (2008). https://doi.org/10.1007/s11882-008-0047-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0047-1

Keywords

Navigation