Skip to main content

Advertisement

Log in

The role of novel genes in modifying airway responses in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Major progress has been made during the past few years in developing a better understanding of the genetic basis of asthma, which has led to the identification of several chromosomal regions and loci showing linkage to and association with asthma and asthma-related phenotypes. Recent positional cloning approaches have also been informative in identifying several strong candidate genes for asthma. As another approach, association studies between candidate gene polymorphisms and asthma-related phenotypes have been conducted in many areas and replicated in different ethnic groups. These approaches need to be followed by validation processes to confirm their functional relevance in the pathophysiology of asthma. In this review, we describe several novel genes, including ADAM33, ADRB2, and eotaxin, that modify airway responsiveness in asthmatic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Holloway JW, Beghe B, Holgate ST, et al.: The genetic basis of atopic asthma. Clin Exp Allergy 1999, 29:1023–1032.

    Article  PubMed  CAS  Google Scholar 

  2. Blumenthal MN: The role of genetics in the development of asthma and atopy. Curr Opin Allergy Clin Immunol 2005, 5:141–145.

    Article  PubMed  CAS  Google Scholar 

  3. Gao PS, Huang SK: Genetic aspects of asthma. Panminerva Med 2004, 46:121–134.

    PubMed  CAS  Google Scholar 

  4. Van Eerdewegh P, Little RD, Dupuis J, et al.: Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418:426–430. This is the first study to identify and characterize ADAM33 as a novel candidate gene involved in the pathogenesis of asthma, especially in bronchial hyperresponsiveness, by a positional cloning approach.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Y, Leaves NI, Anderson GG, et al.: Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobin E levels and asthma. Nat Genet 2003, 34:181–186.

    Article  PubMed  CAS  Google Scholar 

  6. Allen M, Heinzmann A, Noguchi E, et al.: Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 2003, 35:258–263.

    Article  PubMed  CAS  Google Scholar 

  7. Laitinen T, Daly MJ, Rioux JD, et al.: A susceptibility locus for asthma-related traits on chromosome 7 revealed by genome-wide scan in a founder population. Nat Genet 2001, 8:87–91.

    Article  CAS  Google Scholar 

  8. Laitinen T, Polvi A, Rydman P, et al.: Characterization of a common susceptibility locus for asthma-related traits. Science 2004, 304:300–304.

    Article  PubMed  CAS  Google Scholar 

  9. Hoffijan S, Nicolae D, Ober C: Association studies for asthma and atopic diseases: a comprehensive review of the literature. Respir Res 2003, 4:14.

    Article  Google Scholar 

  10. Smith AK, Meyers DA: Family studies and positional cloning of genes for asthma and related phenotypes. Immunol Allergy Clin North Am 2005, 25:641–654.

    Article  PubMed  Google Scholar 

  11. Laitinen T, Polvi A, Rydman P, et al.: Characterization of a common susceptibility locus for asthma-related traits. Science 2004, 304:300–304.

    Article  PubMed  CAS  Google Scholar 

  12. Moffatt MF: SPINK5: A gene for atopic dermatitis and asthma. Clin Exp Allergy 2004, 34:325–327.

    Article  PubMed  CAS  Google Scholar 

  13. Cakebread JA, Haitchi HM, Holloway JW, et al.: The role of ADAM33 in the pathogenesis of asthma. Springer Semin Immunopathol 2004, 25:361–375. The role of ADAM33 in the pathogenesis of asthma is emphasized, as ADAM33 was closely associated with asthma progress, and can be used for predicting reduced lung function in young children, indicating that ADAM33 may have a significant impact on the natural history of asthma.

    Article  PubMed  CAS  Google Scholar 

  14. Howard TD, Postma DS, Jongepier H, et al.: Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations. J Allergy Clin Immunol 2003, 112:717–722. This is a confirmative study to demonstrate positive associations of ADAM33 gene in four different ethnic groups (black, white, Hispanic, and Dutch), suggesting a role of ADAM33 as an asthma susceptibility gene.

    Article  PubMed  CAS  Google Scholar 

  15. Werner M, Herbon N, Gohlke H, et al.: Asthma is associated with single-nucleotide polymorphisms in ADAM 33. Clin Exp Allergy 2004, 34:26–31.

    Article  PubMed  CAS  Google Scholar 

  16. Holgate ST, Davies DE, Powell RM, et al.: ADAM33: a newly identified protease involved in airway remodeling. Pulm Pharmacol Ther 2006, 19:3–11.

    Article  PubMed  CAS  Google Scholar 

  17. Lee JH, Park HS, Par SW, et al.: ADAM33 polymorphisms: association with bronchial hyperresponsiveness in Korean asthmatics. Clin Exp Allergy 2004, 34:860–865.

    Article  PubMed  CAS  Google Scholar 

  18. Jongepier H, Boezen HM, Dijkstra A, et al.: Polymorphisms of the ADAM33 gene are associated with decline in FEV1 in a Dutch asthma population. Am J Respir Crit Care Med 2003, 167:A749.

    Google Scholar 

  19. van Diemen CC, Postma DS, Vonk JM, et al.: A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 2005, 172:329–333.

    Article  PubMed  Google Scholar 

  20. Simpson A, Maniatis N, Jury F, et al.: Polymorphisms in a disintegrin and metalloprotease 33 predict impaired early-life lung function. Am J Respir Crit Care Med 2005, 172:55–60.

    Article  PubMed  Google Scholar 

  21. Powell RM, Wicks J, Holloway JW, et al.: The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. Am J Respir Cell Mol Biol 2004, 31:13–21.

    Article  PubMed  CAS  Google Scholar 

  22. Davies DE, Wicks J, Powell RM, et al.: Airway remodeling in asthma—new insights. J Allergy Clin Immunol 2003, 111:215–225.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor DR, Kennedy MA: Genetic variation of the beta(2)-adrenoceptor: its functional and clinical importance in bronchial asthma. Am J Pharmacogenomics 2001, 1:165–174.

    Article  PubMed  CAS  Google Scholar 

  24. McGraw DW, Forbes SL, Kramer LA, et al.: Transgenic overexpression of beta(2)-adrenergic receptors in airway smooth muscle alters myocyte function and ablates bronchial hyperreactivity. J Biol Chem 1999, 274:32241–32247.

    Article  PubMed  CAS  Google Scholar 

  25. Turner SW, Khoo SK, Laing IA, et al.: Beta2 adrenoceptor Arg16Gly polymorphism, airway responsiveness, lung function and asthma in infants and children. Clin Exp Allergy 2004, 34:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  26. Summerhill E, Leavitt SA, Gidley H, et al.: Beta(2)-adrenergic receptor Arg16/Arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am J Respir Crit Care Med 2000, 162:599–602.

    PubMed  CAS  Google Scholar 

  27. Silverman EK, Kwiatkowski DJ, Sylvia JS, et al.: Familybased association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program. J Allergy Clin Immunol 2003, 112:870–876.

    Article  PubMed  CAS  Google Scholar 

  28. Shore SA, Moore PE: Regulation of beta-adrenergic responses in airway smooth muscle. Resp Physiol Neurobiol 2003, 137:179–195.

    Article  CAS  Google Scholar 

  29. Sayer I, Hall IP: Pharmacogenetic approaches in the treatment of asthma. Curr Allergy Asthma Rep 2005, 5:101–108.

    Article  Google Scholar 

  30. Israel E, Chinchilli VM, Ford JG, et al.: Use of regularly scheduled albuterol treatment in asthma: genotypestrati fied, randomised, placebo-controlled cross-over trial. Lancet 2005, 364:1505–1512.

    Article  CAS  Google Scholar 

  31. Holgate ST, Holloway J, Wilson S, et al.: Epithelial-mesenchymal communication in the pathogenesis of chronic asthma. Proc Am Thorac Soc 2004, 1:93–98.

    Article  PubMed  CAS  Google Scholar 

  32. Vendelin J, Pulkkinen V, Rehn M, et al.: Characterization of GPRA, a novel G protein-coupled receptor related to asthma. Am J Respir Cell Mol Biol 2005, 33:262–270.

    Article  PubMed  CAS  Google Scholar 

  33. Huang JL: Asthma severity and genetics in Taiwan. J Microbiol Immunol Infect 2005, 38:158–163.

    PubMed  CAS  Google Scholar 

  34. Lyon H, Lange C, Lake S, et al.: IL-10 gene polymorphisms are associated with asthma phenotypes in children. Genet Epidemiol 2004, 26:155–165.

    Article  PubMed  Google Scholar 

  35. Chang HS, Kim JS, Lee JH, et al.: A single nucleotide polymorphism on the promoter of eotaxin1 associates with its mRNA expression and asthma phenotypes. J Immunol 2005, 174:1525–1531.

    PubMed  CAS  Google Scholar 

  36. Kuperman DA, Lewis CC, Woodruff PG, et al.: Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol 2005, 116:305–311. Through the comparative microarray study of transgenic models and human epithelial cells, four candidate genes, including calcium-activated chloride channel 1, 15-lipoxygenase, trefoil factor 2, and intelectin, were suggested in the pathophysiology of asthma.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HS., Kim, SH. & Park, CS. The role of novel genes in modifying airway responses in asthma. Curr Allergy Asthma Rep 6, 112–116 (2006). https://doi.org/10.1007/s11882-006-0048-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-006-0048-x

Keywords

Navigation