Skip to main content

Advertisement

Log in

The role of ADAM33 in the pathogenesis of asthma

  • Original Paper
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

While asthma is a disorder of the conducting airways characterised by Th2-directed inflammation, a second set of mechanisms is being increasingly recognised as fundamental to disease chronicity and severity, for which the term “remodelling” has been used. The cellular and mediator responses underpinning airway remodelling involve aberrant communication between the airway epithelium and underlying mesenchyme, involving the generation of growth factors that lead to proliferation of fibroblasts and smooth muscle and the deposition of matrix proteins to cause airway wall thickening linked to bronchial hyperresponsiveness and fixed airflow obstruction. The identification of ADAM33 on chromosome 20p13 from positional cloning as a novel candidate gene involved in the pathogenesis of these structural and functional changes has opened the way to further insight into these processes that contribute to corticosteroid refractoriness. The preferential expression of ADAM33 in mesenchymal cells and its multiple molecular actions provide ample opportunity for incriminating this molecule in chronic asthma. Its association with progressive asthma and in predicting reduced lung function in young children suggest that ADAM33 has an important role in the natural history and possibly the origins of asthma, a disease unique to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Viegi I, Annesi I, Matteelli G (2003) Epidemiology of Asthma. Eur Respir Monograph 8:1

  2. National Asthma Campaign (2001) Asthma Audit 2001. Asthma J 6

  3. Holgate ST, Lackie PM, Howarth PH, et al (2001) Invited lecture: activation of the epithelial mesenchymal trophic unit in the pathogenesis of asthma. Int Arch Allergy Immunol 124:253

    Google Scholar 

  4. Holgate ST (1999) The epidemic of allergy and asthma. Nature 402:B2

    Google Scholar 

  5. Jeffery P (2001) Remodelling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164:S28

    Google Scholar 

  6. Puddicombe SM, Polosa R, Richter A, et al (2000) Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 14:1362

    Google Scholar 

  7. Bucchieri F, Puddicombe SM, Lordan JL, et al (2002) Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am J Respir Cell Mol Biol 27:179

    Google Scholar 

  8. Cokugras H, Akcakaya N, Seckin, et al (2001) Ultrastructural examination of bronchial biopsy specimens from children with moderate asthma. Thorax 56:25

  9. Davies DE, Holgate ST (2002) Asthma: the importance of epithelial mesenchymal communication in pathogenesis. Inflammation and the airway epithelium in asthma. Int J Biochem Cell Biol 34:1520

    Google Scholar 

  10. Koppelman GH, Los H, Postma DS (1999) Genetic and environment in asthma: the answer of twin studies. Eur Respir J 13:2

    Google Scholar 

  11. Graves PE, Kabesch M, Halonen M, et al (2000) A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 105:506

    Google Scholar 

  12. Heinzmann A, Mao XQ, Akaiwa M, et al (2000) Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 9:549

    Google Scholar 

  13. Rosenwasser LJ, Borish L (1997) Genetics of atopy and asthma: The rationale behind promoter based candidate gene studies (IL-4 and IL-10). Am J Respir Crit Care Med 156:S152

    Google Scholar 

  14. Thomas NS, Wilkinson J, Holgate ST (1997) The candidate region approach to the genetics of asthma and allergy. Am J Respir Crit Care Med 156:S144

    Google Scholar 

  15. Zhang Y, Leaves NI, Anderson GG, et al (2003) Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 34:181

    Google Scholar 

  16. Van Eerdewegh P, Little RD, Dupuis J, et al (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418:426

    Google Scholar 

  17. Campbell H, Rudan I (2002) Interpretation of genetic association studies in complex disease. Pharmacogenomics J 2:349

    Google Scholar 

  18. Howard TD, Meyers DA, Ampleford EA, et al (2002) Association of ADAM33 with asthma and associated phenotypes in ethnically diverse populations. Am J Hum Genet 17:488:A1861

    Google Scholar 

  19. De Sanctis GT, Merchant M, Beier DR, et al (1995) Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 11:150

    Google Scholar 

  20. Gunn TM, Azarani A, Kim PH, et al (2002) Identification and preliminary characterization of mouse Adam33. BMC Genet 3:2

    Google Scholar 

  21. Yoshinaka T, Nishii K, Yamada K, et al (2002) Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene 282:227

    Google Scholar 

  22. Primakoff P, Myles DG (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16:83

    Google Scholar 

  23. Izumi Y, Hirata M, Hasuwa H, et al (1998) A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J 17:7260

    Google Scholar 

  24. Nath D, Slocombe PM, Webster A, et al (2000) Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113:2319

    Google Scholar 

  25. Hougaard S, Loechel F, Xu X, et al (2000) Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem Biophys Res Commun 275:261

    Google Scholar 

  26. Iba K, Albrechtsen R, Gilpin B, et al (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading. J Cell Biol 149:1143

    Google Scholar 

  27. Gilpin BJ, Loechel F, Mattei MG, et al (1998) A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J Biol Chem 273:157

    Google Scholar 

  28. Loechel F, Gilpin BJ, Engvall E, et al (1998) Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem 273:16993

    Google Scholar 

  29. Krymskaya VP, Shipley JM (2003) Lymphangioleiomyomatosis: a complex tale of serum response factor-mediated tissue inhibitor of metalloproteinase-3 regulation. Am J Respir Cell Mol Biol 28:546

    Google Scholar 

  30. Levy GG, Nichols WC, Lian EC, et al (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488

    Google Scholar 

  31. Colige A, Sieron AL, Li SW, et al (1999) Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 65:308

    Google Scholar 

  32. Umland SP, Garlisi CG, Shah H, et al (2003) Human ADAM33 mRNA expression profile and post- transcriptional regulation. Am J Respir Cell Mol Biol 29:571

    Google Scholar 

  33. Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81:179

    Google Scholar 

  34. Dalgleish GD, Veyrune JL, Accornero N, et al (1999) Localisation of a reporter transcript by the c-myc 3’-UTR is linked to translation. Nucleic Acids Res 27:4363

    Google Scholar 

  35. Garlisi CG, Zou J, Devito KE, et al (2003) Human ADAM33: protein maturation and localization. Biochem Biophys Res Commun 301:35

    Google Scholar 

  36. Sheppard P, Baindor N, Bishop P: Mammalian Adhesion Protease Peptides wo 01/09293A2. US Patent 2001

  37. Powell RM, Wicks J, Holloway JW, et al (2003) Identification and quantification of novel splice variants of a disintegrin and metalloprotease (ADAM) 33 reveal distinct tissue expression profiles. Am J Respir Crit Care Med 167:A440

    Google Scholar 

  38. Loechel F, Overgaard MT, Oxvig C, et al (1999) Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch. J Biol Chem 274:13427

    Google Scholar 

  39. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578

    Google Scholar 

  40. Itai T, Tanaka M, Nagata S (2001) Processing of tumor necrosis factor by the membrane-bound TNF-alpha-converting enzyme, but not its truncated soluble form. Eur J Biochem 268:2074–2082

    Google Scholar 

  41. Laporte JD, Joubert PO, Fiset PO, et al (2003) Expression of ADAM-33 in cultured human airway smooth muscle cells. Am J Respir Crit Care Med 167:A329

    Google Scholar 

  42. Holgate ST, Davies DE, Lackie PM, et al (2000) Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 105:193

    Google Scholar 

  43. Davies DE, Wicks J, Powell RM, et al (2003) Airway remodelling in asthma—New insights. J Allergy Clin Immunol 111:215

    Google Scholar 

  44. Richter A, Puddicombe SM, Lordan JL, et al (2001) The contribution of interleukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma. Am J Respir Cell Mol Biol 25:385

    Google Scholar 

  45. Zhang S, Smartt H, Holgate ST, et al (1999) Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab Invest 79:395

    Google Scholar 

  46. Chaudhary N, Richter A, Collins JE (2001) Phenotype comparison of asthmatic and non-asthmatic (myo) fibroblasts. Am J Respir Crit Care Med 163:A473

    Google Scholar 

  47. Johnson PR, Roth M, Tamm M, et al (2001) Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med 164:474

    Google Scholar 

  48. Keith T (2001) Novel human gene relating to respiratory diseases, obesity, and inflammatory bowel disease. US Patent

  49. Howard L, Nelson KK, Maciewicz RA, et al (1999) Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J Biol Chem 274:31693

    Google Scholar 

  50. Galliano MF, Huet C, Frygelius J, et al (2000) Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J Biol Chem 275:13933

    Google Scholar 

  51. Cousin H, Gaultier A, Bleux C, et al (2000) PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Dev Biol 227:197

    Google Scholar 

  52. Poghosyan Z, Robbins SM, Houslay MD, et al (2002) Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. J Biol Chem 277:4999

    Google Scholar 

  53. Drazen JM, Weiss ST (2002) Genetics: inherit the wheeze. Nature 418:383

    Google Scholar 

  54. Peschon JJ, Slack JL, Reddy P, et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281

    Google Scholar 

  55. Schlondorff J, Blobel CP (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112:3603

    Google Scholar 

  56. Kheradmand F, Werb Z (2002) Shedding light on sheddases: role in growth and development. Bioessays 24:8

    Google Scholar 

  57. Rio C, Buxbaum JD, Peschon JJ, et al (2000) Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 275:10379

    Google Scholar 

  58. Garton KJ, Gough PJ, Blobel CP, et al (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993

    Google Scholar 

  59. Asakura M, Kitakaze M, Takashima S, et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35

    Google Scholar 

  60. Nath D, Slocombe PM, Stephens PE, et al (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112:579

    Google Scholar 

  61. Chen MS, Tung KS, Coonrod SA, et al (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci USA 96:11830

    Google Scholar 

  62. Herren B, Garton KJ, Coats S, et al (2001) ADAM15 overexpression in NIH3T3 cells enhances cell-cell interactions. Exp Cell Res 271:152

    Google Scholar 

  63. Hirst SJ (1996) Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J 9:808

    Google Scholar 

  64. Jongpier H, Boezen HM, Dijkstra A (2003) Polymorphisms of the ADAM33 gene are associated with decline in FEV1 in a dutch asthma population. Am J Respir Crit Care Med 167:A749

    Google Scholar 

  65. Wicks J, Powell RM, Richter A (2003) Transient upregulation of ADAM33 by TGFβ precedes myofibroblast differentiation. Am J Respir Crit Care Med 167:A157

    Google Scholar 

  66. Payne DN, Rogers AV, Adelroth E, et al (2003) Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med 167:78

    Google Scholar 

  67. Pohunek P, Roche WR, Tarzikova J, et al (2000) Eosinophilic inflammation in the bronchial mucosa in children with bronchial asthma. Eur Respir J 11:160s

    Google Scholar 

  68. Dezateux C, Stocks J, Dundas I, et al (1999) Impaired airway function and wheezing in infancy: the influence of maternal smoking and a genetic predisposition to asthma. Am J Respir Crit Care Med 159:403

    Google Scholar 

  69. Dezateux C, Stocks J, Wade AM, et al (2001) Airway function at one year: association with premorbid airway function, wheezing, and maternal smoking. Thorax 56:680

    Google Scholar 

  70. London SJ, James Gauderman W, Avol E, et al (2001) Family history and the risk of early-onset persistent, early-onset transient, and late-onset asthma. Epidemiology 12:577

    Google Scholar 

  71. Sekhon HS, Jia Y, Raab R, et al (1999) Prenatal nicotine increases pulmonary alpha7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest 103:637

    Google Scholar 

  72. Sekhon HS, Keller JA, Proskocil BJ, et al (2002) Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung. Association with alpha7 nicotinic acetylcholine receptors. Am J Respir Cell Mol Biol 26:31

    Google Scholar 

  73. Szepfalusi Z, Pichler J, Elsasser S, et al (2000) Transplacental priming of the human immune system with environmental allergens can occur early in gestation. J Allergy Clin Immunol 106:530

    Google Scholar 

  74. Holt PG (1996) Primary allergic sensitization to environmental antigens: perinatal T cell priming as a determinant of responder phenotype in adulthood. J Exp Med 183:1297

    Google Scholar 

  75. Young S, Le Souef PN, Geelhoed GC, et al (1991) The influence of a family history of asthma and parental smoking on airway responsiveness in early infancy. N Engl J Med 324:1168

    Google Scholar 

  76. Black JL, Johnson PR (2002) Factors controlling smooth muscle proliferation and airway remodelling. Curr Opin Allergy Clin Immunol 2:47

    Google Scholar 

  77. Brightling CE, Bradding P, Symon FA, et al (2002) Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 346:1699

    Google Scholar 

  78. Page S, Ammit AJ, Black JL, et al (2001) Human mast cell and airway smooth muscle cell interactions: implications for asthma. Am J Physiol Lung Cell Mol Physiol 281:L1313

    Google Scholar 

  79. Zhao J, Chen H, Peschon JJ, et al (2001) Pulmonary hypoplasia in mice lacking tumor necrosis factor-alpha converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev Biol 232:204

    Google Scholar 

  80. Zhao J, Chen H, Wang YL, et al (2001) Abrogation of tumor necrosis factor-alpha converting enzyme inhibits embryonic lung morphogenesis in culture. Int J Dev Biol 45:623

    Google Scholar 

  81. Taussig LM, Wright AL, Holberg CJ, et al (2003) Tucson Children’s Respiratory Study: 1980 to present. J Allergy Clin Immunol 111:661; quiz 676

    Google Scholar 

  82. Haitchi HM, Powell RM, Wilson DI (2003) ADAM 33 expression in embryonic mouse lung. Am J Respir Crit Care Med 167 (No.7): A377

  83. Ahmadi KR, Goldstein DB (2002) Multifactorial diseases: asthma genetics point the way. Curr Biol 12:R702

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Medical Research Council, AAIR Charity and Wellcome Trust for supporting this work, Mrs. Chris Vincent and Kate Roberts for helping prepare the manuscript, and Dr. J.A. Holloway for her help in preparing the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Holgate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakebread, J.A., Haitchi, HM., Holloway, J.W. et al. The role of ADAM33 in the pathogenesis of asthma. Springer Semin Immun 25, 361–375 (2004). https://doi.org/10.1007/s00281-003-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-003-0153-z

Keywords

Navigation