Skip to main content

Advertisement

Log in

Allergic airway inflammation

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Several genes, including ADAM33, DPP10, PHF11, GPRA, and TIM-1, have been implicated in the pathogenesis and susceptibility to atopy and asthma. Advances have been made in defining the mechanism for the control of allergic airway inflammation in response to inhaled antigens. There is growing evidence that associates asthma with a systemic propensity for allergic type 2 T-cell cytokines. Disordered coagulation and fibrinolysis could also exacerbate asthma symptoms. Major emphasis on immunotherapy for asthma during the past decade has been to direct the immune response to a type 1 response. Recent literature supports the pivotal role of plasmacytoid dendritic cells and allergen-specific T-regulatory cells in the development of tolerance to allergens. In this review article, we discuss the current information on the pathogenesis of allergic airway inflammation and potential allergen immunotherapies, which could be beneficial in the treatment of airway inflammation, allergy, and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Oettgen HC, Geha RS: IgE regulation and roles in asthma pathogenesis. J Allergy Clin Immunol 2001, 107:429–440.

    Article  PubMed  CAS  Google Scholar 

  2. Broide DH: Molecular and cellular mechanisms of allergic diseases. J Allergy Clin Immunol 2001, 108:S65–71.

    Article  PubMed  CAS  Google Scholar 

  3. Vignola AM, Kips J, Bousquet J: Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol 2000, 105:1041–1053.

    Article  PubMed  CAS  Google Scholar 

  4. Rothenberg ME: Eosinophilia. N Engl J Med 1998, 338:1592–1600.

    Article  PubMed  CAS  Google Scholar 

  5. O’Garra A, Murphy K: Role of cytokines in determining Tlymphocyte function. Curr Opin Immunol 1994, 6:458–466.

    Article  PubMed  CAS  Google Scholar 

  6. Ritz SA, Cundall MJ, Gajewska BU, et al.: The lung cytokine microenvironment influences molecular events in the lymph nodes during Th1 and Th2 respiratory mucosal sensitization to antigen in vivo. Clin Exp Immunol 2004, 138:213–220.

    Article  PubMed  CAS  Google Scholar 

  7. Pulendran B, Smith JL, Caspary G, et al.: Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999, 96:1036–1041.

    Article  PubMed  CAS  Google Scholar 

  8. Daro E, Pulendran B, Brasel K, et al.: Polyethylene glycolmodified GM-CSF expands CD11B-high but not CD11b-low CD11c-high murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000, 165:49–58.

    PubMed  CAS  Google Scholar 

  9. Schuler G, Thurner B, Romani N: Dendritic cells: from ignored cells to major players in T-cell immunity. Int Arch Allergy Immunol 1997, 112:317–322.

    Article  PubMed  CAS  Google Scholar 

  10. Rissoan M-C, Soumelis V, Kadowaki N, et al.: Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999, 283:1183–1186.

    Article  PubMed  CAS  Google Scholar 

  11. Romagnani S: T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 2000, 85:9–21.

    Article  PubMed  CAS  Google Scholar 

  12. Asona M, Toda M, Sakaguchi N, Sakaguchi S: Autoimmune disease as a consequence of developmental abnormality of a T cell sub-population. J Exp Med 1998, 184:387–396.

    Google Scholar 

  13. Annacker O, Burlen-Defranoux O, Barbosa TC, et al.: CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 2001, 166:3008–3016.

    PubMed  CAS  Google Scholar 

  14. Bensinger SJ, Bandeira A, Jordan MS, et al.: MHC class-II positive cortical epithelium mediates the selection of CD4+CD25+ immunoregulatory T cells. J Exp Med 2001, 194:427–438.

    Article  PubMed  CAS  Google Scholar 

  15. Suto A, Nakajima H, Ikeda K, et al.: CD4+CD25+ T cell development is regulated by at least 2 distinct mechanisms. Blood 2002, 99:555–560.

    Article  PubMed  CAS  Google Scholar 

  16. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  17. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4:330–336.

    Article  PubMed  CAS  Google Scholar 

  18. Zelenika D, Adams E, Humm S, et al.: Regulatory T cells overexpress a subset of Th2 gene transcripts. J Immunol 2002, 168:1069–1079.

    PubMed  CAS  Google Scholar 

  19. Thornton AM, Shevach EM: Suppressor function of CD4+CD25+ immunoregulatory T cells is antigen non-specific. J Immunol 2000, 164:83–190.

    Google Scholar 

  20. Shevach EM: Certified professionals: CD4+CD25+ suppressor T cells. J Exp Med 2001, 193:F41-F45.

    Article  PubMed  CAS  Google Scholar 

  21. Seddon B, Mason D: Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+CD45RC-cells and CD4+CD8-thymocytes. J Exp Med 1999, 189:877–882.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi T, Tagami T, Yamazaki S, et al.: Immunological self tolerance maintained by CD4+CD25+ regulatory T cells constitutively expressing cytotoxic T-lymphocyte associated antigen 4. J Exp Med 2000, 192:303–310.

    Article  PubMed  CAS  Google Scholar 

  23. Akbari O, DeKruyff RH, Umetsu DT: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature 2001, 2:725–731. This study was focused on defining the mechanisms of antigen presentation in the development of peripheral CD4+ T-cell tolerance to inhaled antigen and investigating the role of pulmonary DCs in this tolerance process. This study shows that IL-10 production by DCs is critical for the induction of tolerance and that mature DCs mediate tolerance.

    CAS  Google Scholar 

  24. Akbari O, Freeman GJ, Meyer EH, et al.: Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 2002, 8:1024–1032.

    Article  PubMed  CAS  Google Scholar 

  25. Hadeiba H, Locksley RM: Lung CD25 CD4 regulatory T cells suppress type 2 immune responses but not bronchial hyperreactivity. J Immunol 2003, 170:5502–5510.

    PubMed  CAS  Google Scholar 

  26. Stock P, Akbari O, Berry G, et al.: Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 2004, Sep 26 [Epub ahead of print].

  27. Bellinghausen I, Klostermann B, Knop J, Saloga J: Human CD4+CD25+ T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J Allergy Clin Immunol 2003, 111:862–868.

    Article  PubMed  CAS  Google Scholar 

  28. Ling EM, Smith T, Nguyen XD, et al.: Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 2004, 363:608–615.

    Article  PubMed  CAS  Google Scholar 

  29. Dao Nguyen X, Robinson DS: Fluticasone propionate increases CD4CD25 T regulatory cell suppression of allergen-stimulated CD4CD25 T cells by an IL-10-dependent mechanism. J Allergy Clin Immunol 2004, 114:296–301.

    Article  PubMed  CAS  Google Scholar 

  30. Gavett SH, Chen X, Finkelman F, Wills-Karp M: Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 1994, 10:587–593.

    PubMed  CAS  Google Scholar 

  31. Stock P, Kallinich T, Akbari O, et al.: CD8+ T cells regulate immune responses in a murine model of allergen-induced sensitization and airway inflammation. Eur J Immunol 2004, 34:1817–1827.

    Article  PubMed  CAS  Google Scholar 

  32. Miyahara N, Takeda K, Kodama T, et al.: Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 2004, 172:2549–2558.

    PubMed  CAS  Google Scholar 

  33. Sawicka E, Noble A, Walker C, Kemeny DM: Tc2 cells respond to soluble antigen in the respiratory tract and induce lung eosinophilia and bronchial hyperresponsiveness. Eur J Immunol 2004, 34:2599–2608.

    Article  PubMed  CAS  Google Scholar 

  34. Weninger W, Crowley MA, Manjunath N, von Andrian UH: Migratory properties of naive, effector, and memory CD8(+) T cells. J Exp Med 2001, 194:953–966.

    Article  PubMed  CAS  Google Scholar 

  35. Miyahara N, Swanson BJ, Takeda K, et al.: Effector CD8+ T cells mediate inflammation and airway hyper-responsiveness. Nat Med 2004, 10:865–869. This study suggests an important role for effector CD8+ T cells in the development of AHR and airway inflammation. It suggests that the migratory properties of this cell may be associated with the TC2 type cytokine production.

    Article  PubMed  CAS  Google Scholar 

  36. Marsland BJ, Harris NL, Camberis M, et al.: Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells. Proc Natl Acad Sci U S A 2004, 101:6116–6121.

    Article  PubMed  CAS  Google Scholar 

  37. Hataji O, Taguchi O, Gabazza EC, et al.: Activation of protein C pathway in the airways. Lung 2002, 180:47–59.

    Article  PubMed  CAS  Google Scholar 

  38. Banach-Wawrzenczyk E, Dziedziczko A, Rosc D: Fibrinolysis system in patients with bronchial asthma. Med Sci Monit 2000, 6:103–107.

    PubMed  CAS  Google Scholar 

  39. Wagers SS, Norton RJ, Rinaldi LM, et al.: Extravascular fibrin, plasminogen activator, plasminogen activator inhibitors, and airway hyperresponsiveness. J Clin Invest 2004, 114:104–111.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki K, Gabazza EC, Hayashi T, et al.: Protective role of activated protein C in lung and airway remodeling. Crit Care Med 2004, 32(5 Suppl):S262-S265.

    Article  PubMed  CAS  Google Scholar 

  41. Kumagai K, Ohno I, Okada S, et al.: Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J Immunol 1999, 162:4212–4219.

    PubMed  CAS  Google Scholar 

  42. Pouladi MA, Robbins CS, Swirski FK, et al.: Interleukin-13-dependent expression of matrix metalloproteinase-12 is required for the development of airway eosinophilia in mice. Am J Respir Cell Mol Biol 2004, 30:84–90.

    Article  PubMed  CAS  Google Scholar 

  43. Lee YC, Lee HB, Rhee YK, Song CH: The involvement of matrix metalloproteinase-9 in airway inflammation of patients with acute asthma. Clin Exp Allergy 2001, 31:1623–1630.

    Article  PubMed  CAS  Google Scholar 

  44. McMillan SJ, Kearley J, Campbell JD, et al.: Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol 2004, 172:2586–2594.

    PubMed  CAS  Google Scholar 

  45. Corry DB, Kiss A, Song LZ, et al.: Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 2004, 18:995–997.

    PubMed  CAS  Google Scholar 

  46. McIntire JJ, Umetsu DT, DeKruyff RH: TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 2004, 25:335–348.

    Article  PubMed  Google Scholar 

  47. Van Eerdewegh P, Little RD, Dupuis J, et al.: Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418:426–430.

    Article  PubMed  CAS  Google Scholar 

  48. Jongepier H, Boezen HM, Dijkstra A, et al.: Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy 2004, 34:757–760. This is the first genetic clinical study disclosing that there is an association between polymorphisms of the ADAM33 gene and the accelerated lung function decline in patients with asthma.

    Article  PubMed  CAS  Google Scholar 

  49. Laitinen T, Polvi A, Rydman P, et al.: Characterization of a common susceptibility locus for asthma-related traits. Science 2004, 304:300–304.

    Article  PubMed  CAS  Google Scholar 

  50. Allen M, Heinzmann A, Noguchi E, et al.: Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 2003, 35:258–263.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Y, Leaves NI, Anderson GG, et al.: Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 2003, 34:181–186.

    Article  PubMed  CAS  Google Scholar 

  52. Bharadwaj A, Agrawal DK: Immunomodulation in asthma: A distant dream or a close reality? Int Immunopharmacol 2004, 4:495–511.

    Article  PubMed  CAS  Google Scholar 

  53. Krieg AM: CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002, 20:709–760.

    Article  PubMed  CAS  Google Scholar 

  54. Kline JN, Kitagaki K, Businga TR, Jain VV: Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am J Physiol Lung Cell Mol Physiol 2002, 283:L170-L179.

    PubMed  CAS  Google Scholar 

  55. Bohle B, Orel L, Kraft D, Ebner C: Oligodeoxynucleotides containing CpG motifs induce low levels of TNF-alpha in human B lymphocytes: possible adjuvants for Th1 responses. J Immunol 2001, 166:3743–3748.

    PubMed  CAS  Google Scholar 

  56. Lyman SD, Brasel K, Rousseau AM, Williams DE: The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells 1994, 12(Suppl 1):99–107.

    PubMed  Google Scholar 

  57. Shurin MR, Esche C, Lotze MT: FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev 1998, 9:37–48.

    Article  PubMed  CAS  Google Scholar 

  58. Brasel K, McKenna HJ, Morrissey PJ, et al.: Hematologic effects of flt3 ligand in vivo in mice. Blood 1996, 88:2004–2012.

    PubMed  CAS  Google Scholar 

  59. Agrawal DK, Hopfenspirger MT, Chavez J, Talmadge JE: Flt3-Ligand attenuates late phase response, airway hyperresponsiveness, and bronchoalveolar lavage eosinophilia in a mouse model of bronchial asthma. Int Immunopharmacol 2001, 1:2081–2089.

    Article  PubMed  CAS  Google Scholar 

  60. Edwan JH, Perry G, Talmadge JE, Agrawal DK: Flt3-ligand reverses late allergic response and airway hyperresponsiveness in a mouse model of allergic inflammation. J Immunol 2004, 172:5016–5023. This novel study presents evidence that FL has the capability of modulating immune responses to antigen in OVA-sensitized and -challenged mice with established AHR.

    PubMed  CAS  Google Scholar 

  61. Hayashi T, Beck L, Rossetto C, et al.: Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004, 114:270–279. This study indicates that pulmonary IDO protects the lung from Th2-driven inflammation and experimental asthma. It shows that induction of IDO could result in immediate and long-term immunomodulatory effects.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, D.K., Bharadwaj, A. Allergic airway inflammation. Curr Allergy Asthma Rep 5, 142–148 (2005). https://doi.org/10.1007/s11882-005-0088-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-005-0088-7

Keywords

Navigation