Skip to main content

Advertisement

Log in

Antibiotics in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma pathogenesis appears to be a result of a complex mixture of genetic and environmental influences. There is evidence that Mycoplasma pneumoniae and Chlamydia pneumoniae play a role in promoting airway inflammation that could contribute to the onset and clinical course of asthma. If antimicrobial therapy can eradicate these organisms, it might be possible to alter the course of the disease. Although antibiotics have no role in the routine management of acute exacerbations of asthma, certain macrolide antibiotics have been shown to have anti-inflammatory activity. Part of this effect is due to their known inhibition of steroid and theophylline metabolism, but through a myriad of mechanisms that are incompletely understood, macrolide antibiotics have additional broad anti-inflammatory properties that might prove useful in the management of asthma and other inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Castro-Rodriguez JA, Holberg CJ, Wright AL, et al.: Association of radiologically ascertained pneumonia before age 3 yr with asthma-like symptoms and pulmonary function during childhood: a prospective study. Am J Respir Crit Care Med 1999, 159:1891–1897.

    PubMed  CAS  Google Scholar 

  2. Celedón JC, Litonjua AA, Ryan L, et al.: Lack of association between antibiotic use in the first year of life and asthma, allergic rhinitis, or eczema at age 5 years. Am J Respir Crit Care Med 2002, 166:72–75.

    Article  PubMed  Google Scholar 

  3. Droste JHJ, Wieringa MH, Weyler JJ, et al.: Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin Exper Allergy 2000, 30:1547–1553.

    CAS  Google Scholar 

  4. Wright AL, Taussig LM, Ray CG, et al.: The Tucson Children’s Respiratory Study, II: lower respiratory tract illness in the first year of life. Am J Epidemiol 1989, 129:1232–1246.

    PubMed  CAS  Google Scholar 

  5. von Mutius E, Illi S, Hirsch T, et al.: Frequency of infections and risk of asthma, atopy and airway hyperresponsiveness in children. Eur Respir J 1999, 14:4–11.

    Article  Google Scholar 

  6. Hegele RG, Hayashi S, Hogg JC, Pare PD: Mechanisms of airway narrowing and hyperresponsiveness in viral respiratory tract infections. Am J Respir Crit Care Med 1995, 151:1659–1664.

    PubMed  CAS  Google Scholar 

  7. Sakamoto M, Ida S, Takishima T: Effect of influenza virus infection on allergic sensitization to aerosolized infection in mice. J Immunol 1984, 132:2614–2617.

    PubMed  CAS  Google Scholar 

  8. Nicholson KG, Kent J, Ireland DC: Respiratory viruses and exacerbations of asthma in adults. Br Med J 1993, 307:982–986.

    CAS  Google Scholar 

  9. Andersen P: Pathogenesis of lower respiratory tract infections due to Chlamydia, Mycoplasma, Legionella, and viruses. Thorax 1998, 53:302–307.

    PubMed  CAS  Google Scholar 

  10. Esposito S, Principi N: Asthma in children: Are chlamydia or mycoplasma involved? Paediatr Drugs 2001, 3:159–168.

    Article  PubMed  CAS  Google Scholar 

  11. Berkovich S, Millian SJ, Snyder RD: The association of viral and Mycoplasma infection with recurrence of wheezing in the asthmatic child. Ann Allergy 1970, 28:43–49.

    PubMed  CAS  Google Scholar 

  12. Kraft M, Cassell GH, Henson JE, et al.: Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma. Am J Respir Crit Care Med 1998, 158:998–1001.

    PubMed  CAS  Google Scholar 

  13. McCaig LF, Hughes JM: Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA 1995, 273:214–219.

    Article  PubMed  CAS  Google Scholar 

  14. Gonzales R, Steiner JF, Sande MA: Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 1997, 278:901–904.

    Article  PubMed  CAS  Google Scholar 

  15. Hirschmann JV: Antibiotics for common respiratory tract infections in adults. Arch Intern Med 2002, 162:256–264.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro GG, Eggleston PA, Pierson WE, et al.: Double-blind study of the effectiveness of a broad spectrum antibiotic in status asthmaticus. Pediatrics 1974, 53:867–872.

    PubMed  CAS  Google Scholar 

  17. Graham VA, Milton AF, Knowles GK, Davies RJ: Routine antibiotics in hospital management of acute asthma. Lancet 1982, 1:418–420.

    Article  PubMed  CAS  Google Scholar 

  18. Sachs APE, Koeter GH, Groenier KH, et al.: Changes in symptoms, peak expiratory flow, and sputum flora during treatment with antibiotics of exacerbations in patients with chronic obstructive pulmonary disease in general practice. Thorax 1995, 50:758–763.

    PubMed  CAS  Google Scholar 

  19. Henderson M, Rubin E: Misuse of antimicrobials in children with asthma and bronchiolitis: a review. Pediatr Infect Dis J 2001, 20:214–215.

    Article  PubMed  CAS  Google Scholar 

  20. Jones K, Gruffydd-Jones K: Management of acute asthma attacks associated with respiratory tract infection: a postal survey of general practitioners in the U.K. Respir Med 1996, 90:419–425.

    Article  PubMed  CAS  Google Scholar 

  21. Hahn DL: Treatment of Chlamydia pneumoniae infection in adult asthma: a before-after trial. J Fam Pract 1995, 41:345–351.

    PubMed  CAS  Google Scholar 

  22. Hahn DL, Bukstein D, Luskin A, Zeitz H: Evidence for Chlamydia pneumoniae infection in steroid-dependent asthma. Ann Allergy Asthma Immunol 1998, 80:45–49.

    PubMed  CAS  Google Scholar 

  23. Black PN, Blasi F, Jenkins CR, et al.: Trial of roxithromycin in subjects with asthma and serologic evidence of infection with Chlamydia pneumoniae. Am J Respir Crit Care Med 2001, 164:536–541. This is a large, randomized, controlled trial looking at the efficacy of treating patients with asthma and evidence of chronic atypical infection with macrolide antibiotics. Johnston [24] is a good editorial that details some of the limitations of the study.

    PubMed  CAS  Google Scholar 

  24. Johnston SL: Is Chlamydia pneumoniae important in asthma? The first controlled trial of therapy leaves the question unanswered. Am J Respir Crit Care Med 2001, 164:513–516.

    PubMed  CAS  Google Scholar 

  25. Kraft M, Cassell GH, Pak J, Martin RJ: Mycoplasma pneumoniae and Chlamydia pneumoniae in Asthma: effect of clarithromycin. Chest 2002, 121:1782–1788. Unlike previous studies on treatment of atypical bacterial infections in asthma, this study demonstrated that improvement in lung function with clarithromycin occurred only in subjects that are PCR positive for Mycoplasma pneumoniae or Chlamydia pneumoniae.

    Article  PubMed  CAS  Google Scholar 

  26. Itkin IH, Menzel ML: The use of macrolide antibiotic substances in the treatment of asthma. J Allergy 1970, 45:146–162.

    Article  PubMed  CAS  Google Scholar 

  27. Jaffe A, Bush A: Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 2001, 31:464–473. This is an excellent review of macrolide antibiotic structure and function, the mechanisms of macrolide anti-inflammatory activity, and the evidence for clinical efficacy of macrolides in lung disease.

    Article  PubMed  CAS  Google Scholar 

  28. Garey KW, Alwani A, Danziger LH, Rubinstein I: Tissue reparative effects of macrolide antibiotics in chronic inflammatory sinopulmonary diseases. Chest 2003, 123:261–265.

    Article  PubMed  Google Scholar 

  29. Hoyt JC, Robbins RA: Macrolide antibiotics and pulmonary inflammation. FEMS Microbiol Lett 2001, 205:1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Siracusa A, Brugnami G, Fiordi T, et al.: Troleandomycin in the treatment of difficult asthma. J Allergy Clin Immunol 1993, 92:677–682.

    Article  PubMed  CAS  Google Scholar 

  31. Fost DA, Leung DY, Martin RJ, et al.: Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999, 103:1031–1035.

    Article  PubMed  CAS  Google Scholar 

  32. Periti P, Mazzei T, Mini E, Novelli A: Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992, 23:106–131.

    Article  PubMed  CAS  Google Scholar 

  33. Black PN: Anti-inflammatory effects of macrolide antibiotics. Eur Respir J 1997, 10:971–972.

    Article  PubMed  CAS  Google Scholar 

  34. Garey KW, Rubinstein I, Gotfried MH, et al.: Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma. Chest 2000, 118:1826–1827.

    Article  PubMed  CAS  Google Scholar 

  35. Kroegel C, Rödel J, Mock B: Chlamydia pneumoniae, clarithromycin, and severe asthma. Chest 2001, 120:1035–1056.

    Article  PubMed  CAS  Google Scholar 

  36. Kamada AK, Hill MR, Ikle DN, et al.: Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol 1993, 91:873–882.

    Article  PubMed  CAS  Google Scholar 

  37. Nelson HS, Hamilos DL, Corsello PR, et al.: A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids. Am Rev Respir Dis 1993, 147:398–404.

    PubMed  CAS  Google Scholar 

  38. Ekici A, Ekici M, Erdemoglu AK: Effect of azithromycin on the severity of bronchial hyperresponsiveness in patients with mild asthma. J Asthma 2002, 39:181–185.

    Article  PubMed  CAS  Google Scholar 

  39. Shimizu T, Kato M, Mochizuki H, et al.: Roxithromycin reduces the degree of bronchial hyperresponsiveness in children with asthma. Chest 1994, 106:458–461.

    PubMed  CAS  Google Scholar 

  40. Kamoi H, Kurihara N, Fujiwara H, et al.: The macrolide antibacterial roxithromycin reduces bronchial hyperresponsiveness and superoxide anion production by polymorphonuclear leukocytes in patients with asthma. J Asthma 1995, 32:191–197.

    PubMed  CAS  Google Scholar 

  41. Amayasu H, Yoshida S, Ebana S, et al.: Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol 2000, 84:594–598.

    Article  PubMed  CAS  Google Scholar 

  42. Avila PC, Boushey HA: Macrolides, asthma, inflammation, and infection. Ann Allergy Asthma Immunol 2000, 84:565–568.

    PubMed  CAS  Google Scholar 

  43. Labro MT, Abdelghaffar H: Immunomodulation by macrolide antibiotics. J Chemother 2001, 13:3–8.

    PubMed  CAS  Google Scholar 

  44. Noma T, Aoki K, Hayashi M, et al.: Effect of roxithromycin on T lymphocyte proliferation and cytokine production elicited by mite antigen. Int Immunopharmacol 2001, 1:201–210.

    Article  PubMed  CAS  Google Scholar 

  45. Kita E, Sawaki M, Nishikawa F, et al.: Enhanced interleukin production after long-term administration of erythromycin stearate. Pharmacology 1990, 41:177–183.

    Article  PubMed  CAS  Google Scholar 

  46. Konno S, Addachi M, Asano K, et al.: Influence of roxithromycin on cell-mediated immune response. Life Sci 1992, 51:PL107-PL112.

    Article  PubMed  CAS  Google Scholar 

  47. Takizawa H, Desaki M, Ohtoshi T, et al.: Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med 1997, 156:266–271.

    PubMed  CAS  Google Scholar 

  48. Oda H, Kadota J, Kohno S, Hara K: Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest 1994, 106:1116–1123.

    PubMed  CAS  Google Scholar 

  49. Kawasaki S., Takizawa H, Ohtoshi T, et al.: Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 1998, 42:1499–1502.

    PubMed  CAS  Google Scholar 

  50. Takizawa H, Desaki M, Ohtoshi T, et al.: Erythromycin suppresses interleukin 6 expression by human bronchial epithelial cells: a potential mechanism of its anti-inflammatory action. Biochem Biophys Res Commun 1995, 210:781–786.

    Article  PubMed  CAS  Google Scholar 

  51. Cazzola M, Salzillo A, Diamare F: Potential role of macrolides in the treatment of asthma. Monaldi Arch Chest Dis 2000, 55:231–236.

    PubMed  CAS  Google Scholar 

  52. Cui C, Honda K, Saito N, et al.: Effect of roxithromycin on eotaxin-primed reactive oxygen species from eosinophils. Int Arch Allergy Immunol 2001, 125(Suppl 1):38–41.

    Article  PubMed  CAS  Google Scholar 

  53. Feldman C, Anderson R, Theron A, et al.: The effects of ketolides on bioactive phospholipid-induced injury to human respiratory epithelium in vitro. Eur Respir J 1999, 13:1022–1028.

    Article  PubMed  CAS  Google Scholar 

  54. Anderson R, Theron AJ, Feldman C: Membrane-stabilizing, anti-inflammatory interactions of macrolides with human neutrophils. Inflammation 1996, 20:693–705.

    Article  PubMed  CAS  Google Scholar 

  55. Takizawa H, Desaki M, Ohtoshi T, et al.: Erythromycin and clarithromycin attenuate cytokine-induced endothelin-1 expression in human bronchial epithelial cells. Eur Respir J 1998, 12:57–63.

    Article  PubMed  CAS  Google Scholar 

  56. Aubert JD, Leuenberger P, Juillerat-Jeanneret L: Endothelin-1 expression in airway epithelial cells. Eur Respir J 1999, 13:225–226.

    Article  PubMed  CAS  Google Scholar 

  57. Suez D, Szefler SJ: Excessive accumulation of mucus in children with asthma: A potential role for erythromycin? a case discussion. J Allergy Clin Immunol 1986, 77:330–334.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beuther, D.A., Martin, R.J. Antibiotics in asthma. Curr Allergy Asthma Rep 4, 132–138 (2004). https://doi.org/10.1007/s11882-004-0058-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0058-5

Keywords

Navigation