Skip to main content

Macrolides and Asthma Therapy

  • Chapter
  • First Online:
Macrolides as Immunomodulatory Agents

Part of the book series: Progress in Inflammation Research ((PIR,volume 92))

  • 126 Accesses

Abstract

Asthma is a chronic condition of the airways that is typified by bronchial hyperresponsiveness, variable airflow obstruction, and airway inflammation. Most patients can achieve disease control using inhaled corticosteroids, with some needing adjunct long-acting bronchodilator therapy. However, an important minority of patients have persistent symptoms and exacerbations despite these treatments. The landmark AMAZES study showed that the macrolide azithromycin significantly reduced the exacerbation rate in this population, using a randomized parallel group design. The efficacy of macrolides in chronic asthma was recently confirmed in a Cochrane systematic review, which analyzed 25 randomized controlled trials with a total of 1973 patients. Mechanistic studies have shown that this therapeutic effect is mediated by reduced mucosal inflammation, improved airway mucus clearance, and favorable modulation of host-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention (Updated 2022). Available at ginasthma.org

  2. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet (London, England). 2018;391(10122):783–800.

    Article  PubMed  Google Scholar 

  3. Adatia A, Vliagoftis H. Challenges in severe asthma: do we need new drugs or new biomarkers? Front Med. 2022;9:921967.

    Article  Google Scholar 

  4. Engelkes M, de Ridder MA, Svensson E, Berencsi K, Prieto-Alhambra D, Lapi F, et al. Multinational cohort study of mortality in patients with asthma and severe asthma. Respir Med. 2020;165:105919.

    Article  PubMed  Google Scholar 

  5. Shaw DE, Gaynor CM, Fogarty AW. Changes in asthma mortality in England and Wales since 2001. Thorax. 2019;74(12):1174–5.

    Article  PubMed  Google Scholar 

  6. Jansson SA, Backman H, Andersson M, Telg G, Lindberg A, Stridsman C, et al. Severe asthma is related to high societal costs and decreased health related quality of life. Respir Med. 2020;162:105860.

    Article  PubMed  Google Scholar 

  7. Janson C, Lisspers K, Ställberg B, Johansson G, Telg G, Thuresson M, et al. Health care resource utilization and cost for asthma patients regularly treated with oral corticosteroids–a Swedish observational cohort study (PACEHR). Respir Res. 2018;19(1):168.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Caminati M, Morais-Almeida M, Bleecker E, Ansotegui I, Canonica GW, Bovo C, et al. Biologics and global burden of asthma: a worldwide portrait and a call for action. World Allergy Org J. 2021;14(2):100502.

    Article  CAS  Google Scholar 

  9. Usmani OS, Lavorini F, Marshall J, Dunlop WCN, Heron L, Farrington E, et al. Critical inhaler errors in asthma and COPD: a systematic review of impact on health outcomes. Respir Res. 2018;19(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Undela K, Goldsmith L, Kew KM, Ferrara G. Macrolides versus placebo for chronic asthma. Cochrane Database Syst Rev. 2021;11(11):Cd002997.

    PubMed  Google Scholar 

  11. Nelson HS, Hamilos DL, Corsello PR, Levesque NV, Buchmeier AD, Bucher BL. A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids. Am Rev Respir Dis. 1993;147(2):398–404.

    Article  CAS  PubMed  Google Scholar 

  12. Kraft M, Cassell GH, Henson JE, Watson H, Williamson J, Marmion BP, et al. Detection of mycoplasma pneumoniae in the airways of adults with chronic asthma. Am J Respir Crit Care Med. 1998;158(3):998–1001.

    Article  CAS  PubMed  Google Scholar 

  13. Gencay M, Rüdiger JJ, Tamm M, Solér M, Perruchoud AP, Roth M. Increased frequency of chlamydia pneumoniae antibodies in patients with asthma. Am J Respir Crit Care Med. 2001;163(5):1097–100.

    Article  CAS  PubMed  Google Scholar 

  14. Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659–68.

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms. Front Immunol. 2018;9:302.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kjarsgaard M, Adatia A, Bhalla A, LaVigne N, Radford K, Huang C, et al. Underestimation of airway luminal eosinophilia by quantitative sputum cytometry. Allergy Asthma Clin Immunol. 2021;17(1):63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shukla SD, Taylor SL, Gibson PG, Barker D, Upham JW, Yang IA, et al. Add-on azithromycin reduces sputum cytokines in non-eosinophilic asthma: an AMAZES substudy. Thorax. 2021;76(7):733–6.

    Article  PubMed  Google Scholar 

  18. Twaddell SH, Baines KJ, Grainge C, Gibson PG. The emerging role of neutrophil extracellular traps in respiratory disease. Chest. 2019;156(4):774–82.

    Article  PubMed  Google Scholar 

  19. Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K, Nagatake T. Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob Agents Chemother. 2003;47(1):48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J. 2006;28(3):486–95.

    Article  CAS  PubMed  Google Scholar 

  21. Hodge S, Reynolds PN. Low-dose azithromycin improves phagocytosis of bacteria by both alveolar and monocyte-derived macrophages in chronic obstructive pulmonary disease subjects. Respirology (Carlton, Vic). 2012;17(5):802–7.

    Article  PubMed  Google Scholar 

  22. Penberthy KK, Juncadella IJ, Ravichandran KS. Apoptosis and engulfment by bronchial epithelial cells. Implications for allergic airway inflammation. Ann Am Thorac Soc. 2014;11(Suppl 5):S259–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML, Newell JD, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest. 2018;128(3):997–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang M, Elicker BM, Henry T, Gierada DS, Schiebler ML, Huang BK, et al. Mucus plugs persist in asthma, and changes in mucus plugs associate with changes in airflow over time. Am J Respir Crit Care Med. 2022;205(9):1036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorrini M, Lupi A, Viglio S, Pamparana F, Cetta G, Iadarola P, et al. Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol. 2001;25(4):492–9.

    Article  CAS  PubMed  Google Scholar 

  27. Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol. 2005;175(6):4009–16.

    Article  CAS  PubMed  Google Scholar 

  28. Nagashima A, Shinkai M, Shinoda M, Shimokawaji T, Kimura Y, Mishina K, et al. Clarithromycin suppresses Chloride Channel accessory 1 and inhibits Interleukin-13-induced goblet cell hyperplasia in human bronchial epithelial cells. Antimicrob Agents Chemother. 2016;60(11):6585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimizu T, Shimizu S. Azithromycin inhibits mucus hypersecretion from airway epithelial cells. Mediat Inflamm. 2012;2012:265714.

    Article  Google Scholar 

  30. Davidson RJ. In vitro activity and pharmacodynamic/pharmacokinetic parameters of clarithromycin and azithromycin: why they matter in the treatment of respiratory tract infections. Infect Drug Resist. 2019;12:585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor SL, Leong LEX, Mobegi FM, Choo JM, Wesselingh S, Yang IA, et al. Long-term azithromycin reduces Haemophilus influenzae and increases antibiotic resistance in severe asthma. Am J Respir Crit Care Med. 2019;200(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  32. Taylor SL, Ivey KL, Gibson PG, Simpson JL, Rogers GB. Airway abundance of Haemophilus influenzae predicts response to azithromycin in adults with persistent uncontrolled asthma. Eur Respir J. 2020;56(4):2000194.

    Article  CAS  PubMed  Google Scholar 

  33. Gibson PG, McDonald VM, Granchelli A, Olin JT. Asthma and comorbid conditions-pulmonary comorbidity. J Allergy Clin Immunol Pract. 2021;9(11):3868–75.

    Article  PubMed  Google Scholar 

  34. Petrov AA, Adatia A, Jolles S, Nair P, Azar A, Walter JE. Antibody deficiency, chronic lung disease, and comorbid conditions: a case-based approach. J Allergy Clin Immunol Pract. 2021;9(11):3899–908.

    Article  PubMed  Google Scholar 

  35. Adatia A, Allen CJ, Wald J, Richards CD, Waserman S, Nair P. Benralizumab for prednisone-dependent eosinophilic asthma associated with novel STAT3 loss of function mutation. Chest. 2021;159(4):e181–e4.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(−/−) mice. Antimicrob Agents Chemother. 2007;51(10):3677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother. 2006;50(5):1680–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spagnolo P, Fabbri LM, Bush A. Long-term macrolide treatment for chronic respiratory disease. Eur Respir J. 2013;42(1):239–51.

    Article  CAS  PubMed  Google Scholar 

  39. Gupta S, Siddiqui S, Haldar P, Raj JV, Entwisle JJ, Wardlaw AJ, et al. Qualitative analysis of high-resolution CT scans in severe asthma. Chest. 2009;136(6):1521–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mao B, Yang JW, Lu HW, Xu JF. Asthma and bronchiectasis exacerbation. Eur Respir J. 2016;47(6):1680–6.

    Article  CAS  PubMed  Google Scholar 

  41. Izquierdo ME, Marion CR, Moore WC, Raraigh KS, Taylor-Cousar JL, Cutting GR, et al. DNA sequencing analysis of cystic fibrosis transmembrane conductance regulator gene identifies cystic fibrosis-associated variants in the severe asthma Research program. Pediatr Pulmonol. 2022;57(7):1782–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Priel E, Adatia A, Kjarsgaard M, Nair P. CFTR heterozygosity in severe asthma with recurrent airway infections: a retrospective review. Allergy Asthma Clin Immunol. 2022;18(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crooks MG, Faruqi S, Morice AH. How does azithromycin improve asthma exacerbations? Lancet. 2018;391(10115):28.

    Article  PubMed  Google Scholar 

  44. Kopsaftis Z, Yap HS, Tin KS, Hnin K, Carson-Chahhoud KV. Pharmacological and surgical interventions for the treatment of gastro-oesophageal reflux in adults and children with asthma. Cochrane Database Syst Rev. 2021;5(5):Cd001496.

    PubMed  Google Scholar 

  45. Kirkland SW, Vandenberghe C, Voaklander B, Nikel T, Campbell S, Rowe BH. Combined inhaled beta-agonist and anticholinergic agents for emergency management in adults with asthma. Cochrane Database Syst Rev. 2017;1(1):Cd001284.

    PubMed  Google Scholar 

  46. Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane Database Syst Rev. 2013;2013(9):Cd000052.

    PubMed  PubMed Central  Google Scholar 

  47. Edmonds ML, Camargo CA, Pollack CV, Rowe BH. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. Cochrane Database Syst Rev. 2000;3:Cd002308.

    Google Scholar 

  48. Normansell R, Sayer B, Waterson S, Dennett EJ, Del Forno M, Dunleavy A. Antibiotics for exacerbations of asthma. Cochrane Database Syst Rev. 2018;6(6):Cd002741.

    PubMed  Google Scholar 

  49. Kamada AK, Hill MR, Iklé DN, Brenner AM, Szefler SJ. Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol. 1993;91(4):873–82.

    Article  CAS  PubMed  Google Scholar 

  50. Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T, et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol. 2000;84(6):594–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kostadima E, Tsiodras S, Alexopoulos EI, Kaditis AG, Mavrou I, Georgatou N, et al. Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma. Eur Respir J. 2004;23(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  52. Piacentini GL, Peroni DG, Bodini A, Pigozzi R, Costella S, Loiacono A, et al. Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: a preliminary report. Allergy Asthma Proc. 2007;28(2):194–8.

    Article  PubMed  Google Scholar 

  53. Simpson J, Powell H, Boyle M, Scott R, Gibson PJR. Anti-inflammatory effects of clarithromycin in refractory non-eosinophilic asthma. Am J Respir Crit Care Med. 2007;12:A11.

    Google Scholar 

  54. Brusselle GG, Vanderstichele C, Jordens P, Deman R, Slabbynck H, Ringoet V, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322–9.

    Article  PubMed  Google Scholar 

  55. Gibson PG, Upham J, Reynolds P, James A, McElduff P, Tyler G, et al. The amazes study: asthma and macrolides: the azithromycin efficacy and safety study research protocol.

    Google Scholar 

  56. Hahn D, Grasmick M, Hetzel S. Pragmatic controlled trial of azithromycin for asthma in adults. Eur Respiratory Soc. 2011;

    Google Scholar 

  57. Cameron EJ, Chaudhuri R, Mair F, McSharry C, Greenlaw N, Weir CJ, et al. Randomised controlled trial of azithromycin in smokers with asthma. Eur Respir J. 2013;42(5):1412–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hahn DL, Plane MB, Mahdi OS, Byrne GI. Secondary outcomes of a pilot randomized trial of azithromycin treatment for asthma. PLoS Clinical Trials. 2006;1(2):e11.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sutherland ER, King TS, Icitovic N, Ameredes BT, Bleecker E, Boushey HA, et al. A trial of clarithromycin for the treatment of suboptimally controlled asthma. J Allergy Clin Immunol. 2010;126(4):747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He J, Zhu N, Chen X. Clinical impacts of azithromycin on lung function and cytokines for athmatic patients. 2009:719–722.

    Google Scholar 

  61. Strunk RC, Bacharier LB, Phillips BR, Szefler SJ, Zeiger RS, Chinchilli VM, et al. Azithromycin or montelukast as inhaled corticosteroid–sparing agents in moderate-to-severe childhood asthma study. J Allergy Clin Immunol. 2008;122(6):1138–44. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Zhang S, Qu Y. Effect of clarithromycin on non-eosinophilic refractory asthma 2012;17(11):1948–1951.

    Google Scholar 

  63. Zhang L, Qian Q. Clinical effect of azithromycin combined with Seretide for asthma 2013;25:159–160.

    Google Scholar 

  64. Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and chlamydia pneumoniae in asthma: effect of clarithromycin. Chest. 2002;121(6):1782–8.

    Article  CAS  PubMed  Google Scholar 

  65. Wan K-S, Liu Y-C, Huang C-S, Su Y-M. Effects of low-dose clarithromycin added to fluticasone on inflammatory markers and pulmonary function among children with asthma: a randomized clinical trial. Allergy Rhinol. 2016;7(3):131.

    Article  Google Scholar 

  66. Black PN, Blasi F, Jenkins CR, Scicchitano R, Mills GD, Rubinfeld AR, et al. Trial of roxithromycin in subjects with asthma and serological evidence of infection with chlamydia pneumoniae. Am J Respir Crit Care Med. 2001;164(4):536–41.

    Article  CAS  PubMed  Google Scholar 

  67. Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu HJC, et al. Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma 1999;29(7):950–956.

    Google Scholar 

  68. Xiao KA. The study on effect of roxithromycin combined with budesonide in therapy in patients with asthma 2013;11:119–120.

    Google Scholar 

  69. YAN X-q, WU L-q, Lin J, Xia X-D, Dai Y-R. Clinical study on efficacy of roxithromycin combined with inhaled budesonide dry powder inhalation on asthma 2008;13(2):184.

    Google Scholar 

  70. Stokholm J, Chawes BL, Vissing NH, Bjarnadóttir E, Pedersen TM, Vinding RK, et al. Azithromycin for episodes with asthma-like symptoms in young children aged 1-3 years: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016;4(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  71. Pincheira MA, Bacharier LB, Castro-Rodriguez JA. Efficacy of macrolides on acute asthma or wheezing exacerbations in children with recurrent wheezing: a systematic review and meta-analysis. Paediatr Drugs. 2020;22(2):217–28.

    Article  PubMed  Google Scholar 

  72. Smith D, Du Rand IA, Addy C, Collyns T, Hart S, Mitchelmore P, et al. British Thoracic Society guideline for the use of long-term macrolides in adults with respiratory disease 2020;7(1):e000489.

    Google Scholar 

  73. FitzGerald JM, Lemiere C, Lougheed MD, Ducharme FM, Dell SD, Ramsey C, et al. Recognition and management of severe asthma: a Canadian thoracic society position statement. Can J Respir Crit Care Sleep Med. 2017;1(4):199–221.

    Google Scholar 

  74. Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J. 2021;57(1):2000528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hiles SA, McDonald VM, Guilhermino M, Brusselle GG, Gibson PG. Does maintenance azithromycin reduce asthma exacerbations? An individual participant data meta-analysis. Eur Respir J. 2019;54(5):1901381.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Ferrara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Undela, K., Adatia, A., Rowe, B.H., Ferrara, G. (2024). Macrolides and Asthma Therapy. In: Rubin, B.K., Shinkai, M. (eds) Macrolides as Immunomodulatory Agents. Progress in Inflammation Research, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-031-42859-3_7

Download citation

Publish with us

Policies and ethics