Skip to main content

Advertisement

Log in

Analysis of leukocyte extravasation across the blood-brain barrier: Conceptual and technical aspects

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The central nervous system (CNS) has long been described as an immunogically privileged organ. However, evidence is accumulating that the CNS is more adequately described as immune competent, albeit atypical. Leukocyte trafficking into the CNS in response to inflammation, as in peripheral organs, occurs in several distinct steps. As with all leukocyte trafficking, the overall process is governed in part by chemokines. The CNS has unique anatomic and physiologic attributes, including the blood-brain barrier. These characteristic features of the CNS interact with a distinct array of chemokines, expressed both constitutively and in response to inflammation. In this review, we consider the potential sites of chemokine action in guiding leukocyte migration. The process of extravasation can usefully be regarded as comprising individual steps. This review is focused on the need to consider these stages separately, and the elucidation of mechanisms at each stage is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rubin LL, Staddon JM: The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999, 22:11–28.

    Article  CAS  PubMed  Google Scholar 

  2. Pachter JS, de Vries HE, Fabry Z: The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 2003, 62:593–604.

    CAS  PubMed  Google Scholar 

  3. Aleu F, Samuels S, Ransohoff J: The pathology of cerebral edema associated with gliomas in man: report based on ten biopsies. Am J Pathol 1966, 48:1043–1061.

    CAS  PubMed  Google Scholar 

  4. Piccio L, Rossi B, Scarpini E, et al.: Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 2002, 168:1940–1949.

    CAS  PubMed  Google Scholar 

  5. Hickey WF: Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 1999, 11:125–137.

    Article  CAS  PubMed  Google Scholar 

  6. Ransohoff RM, Kivisakk P, Kidd G: Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003, 3:569–581. Three proposed mechanisms for leukocyte entry into the CSF compartment are detailed.

    Article  CAS  PubMed  Google Scholar 

  7. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994, 76:301–314.

    Article  CAS  PubMed  Google Scholar 

  8. Butcher EC: Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991, 67:1033–1036.

    Article  CAS  PubMed  Google Scholar 

  9. Thureson-Klein A, Hedqvist P, Lindbom L: Leukocyte diapedesis and plasma extravasation after leukotriene B4: lack of structural injury to the endothelium. Tissue Cell 1986, 18:1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Marchesi VT: The site of leucocyte emigration during inflammation. Q J Exp Physiol Cogn Med Sci 1961, 46:115–118.

    CAS  PubMed  Google Scholar 

  11. Feng D, Nagy JA, Pyne K, et al.: Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 1998, 187:903–915.

    Article  CAS  PubMed  Google Scholar 

  12. Middleton J, Patterson AM, Gardner L, et al.: Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 2002, 100:3853–3860. Current information on the transcytosis and presentation of chemokines by endothelial cells is summarized.

    Article  CAS  PubMed  Google Scholar 

  13. Olson TS, Ley K: Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 2002, 283:R7-R28.

    CAS  PubMed  Google Scholar 

  14. Campbell JJ, Butcher EC: Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 2000, 12:336–341. A very nice review summarizing what is known about tissue-specific homing and the role chemokines play in this selectivity.

    Article  CAS  PubMed  Google Scholar 

  15. Huising MO, Stet RJ, Kruiswijk CP, et al.: Molecular evolution of CXC chemokines: extant CXC chemokines originate from the CNS. Trends Immunol 2003, 24:307–313.

    CAS  PubMed  Google Scholar 

  16. Murphy PM: International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002, 54:227–229.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy PM, Baggiolini M, Charo IF, et al.: International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000, 52:145–176.

    CAS  PubMed  Google Scholar 

  18. Baggiolini M: Chemokines in pathology and medicine. J Intern Med 2001, 250:91–104.

    Article  CAS  PubMed  Google Scholar 

  19. Huo Y, Weber C, Forlow SB, et al.: The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest 2001, 108:1307–1314.

    Article  CAS  PubMed  Google Scholar 

  20. Rollins BJ: Chemokines and atherosclerosis: what Adam Smith has to say about vascular disease. J Clin Invest 2001, 108:1269–1271.

    Article  CAS  PubMed  Google Scholar 

  21. Gunn MD, Tangemann K, Tam C, et al.: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 1998, 95:258–263.

    Article  CAS  PubMed  Google Scholar 

  22. Forster R, Schubel A, Breitfeld D, et al.: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999, 99:23–33.

    Article  CAS  PubMed  Google Scholar 

  23. Campbell JJ, Haraldsen G, Pan J, et al.: The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999, 400:776–780.

    Article  CAS  PubMed  Google Scholar 

  24. Soler D, Humphreys TL, Spinola SM, et al.: CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood 2003, 101:1677–1682.

    Article  CAS  PubMed  Google Scholar 

  25. Huang D, Han Y, Rani MR, et al.: Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev 2000, 177:52–67.

    Article  CAS  PubMed  Google Scholar 

  26. Huang DR, Wang J, Kivisäkk P, et al.: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193:713–726.

    Article  CAS  PubMed  Google Scholar 

  27. Tran PB, Miller RJ: Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 2003, 4:444–455.

    Article  CAS  PubMed  Google Scholar 

  28. Ma Q, Jones D, Borghesani PR, et al.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in C. Proc Natl Acad Sci U S A 1998, 95:9448–9453.

    Article  CAS  PubMed  Google Scholar 

  29. Zou YR, Kottmann AH, Kuroda M, et al.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595–599.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai HH, Frost E, To V, et al.: The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 2002, 110:373–383.

    Article  CAS  PubMed  Google Scholar 

  31. Schwaeble WJ, Stover CM, Schall TJ, et al.: Neuronal expression of fractalkine in the presence and absence of inflammation. FEBS Lett 1998, 439:203–207.

    Article  CAS  PubMed  Google Scholar 

  32. Nishiyori A, Minami M, Ohtani Y, et al.: Localization of fractalkine and CX3CR1 mRNAs in rat brain: Does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 1998, 429:167–172.

    Article  CAS  PubMed  Google Scholar 

  33. Bajetto A, Bonavia R, Barbero S, et al.: Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 2001, 22:147–184.

    Article  CAS  PubMed  Google Scholar 

  34. Ransohoff RM: The chemokine system in neuroinflammation: an update. J Infect Dis 2002, 186(Suppl 2):S152-S156.

    Article  CAS  PubMed  Google Scholar 

  35. Karpus WJ: Chemokines and central nervous system disorders. J Neurovirol 2001, 7:493–500.

    Article  CAS  PubMed  Google Scholar 

  36. Bajetto A, Bonavia R, Barbero S, et al.: Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 2002, 82:1311–1329.

    Article  CAS  PubMed  Google Scholar 

  37. Ransohoff RM, Bacon KB: Chemokine receptor antagonism as a new therapy for multiple sclerosis. Expert Opin Investig Drugs 2000, 9:1079–1097.

    Article  CAS  PubMed  Google Scholar 

  38. Proudfoot AE: Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2002, 2:106–115.

    Article  CAS  PubMed  Google Scholar 

  39. Kivisakk P, Trebst C, Eckstein DJ, et al.: Chemokine-based therapies for MS: How do we get there from here? Trends Immunol 2001, 22:591–593.

    Article  CAS  PubMed  Google Scholar 

  40. Middleton J, Neil S, Wintle J, et al.: Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 1997, 91:385–395.

    Article  CAS  PubMed  Google Scholar 

  41. Andjelkovic AV, Spencer DD, Pachter JS: Visualization of chemokine binding sites on human brain microvessels. J Cell Biol 1999, 145:403–412.

    Article  CAS  PubMed  Google Scholar 

  42. Petty MA, Lo EH: Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 2002, 68:311–323.

    Article  CAS  PubMed  Google Scholar 

  43. McGrath KE, Koniski AD, Maltby KM, et al.: Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999, 213:442–456.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu Y, Yu T, Zhang XC, et al.: Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 2002, 5:719–720.

    Article  CAS  PubMed  Google Scholar 

  45. Glabinski AR, Balasingam V, Tani M, et al.: Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 1996, 156:4363–4368.

    CAS  PubMed  Google Scholar 

  46. Feigelson SW, Grabovsky V, Winter E, et al.: The Src kinase p56(lck) up-regulates VLA-4 integrin affinity: implications for rapid spontaneous and chemokine-triggered T cell adhesion to VCAM-1 and fibronectin. J Biol Chem 2001, 276:13891–13901.

    CAS  PubMed  Google Scholar 

  47. Hickey MJ, Kanwar S, McCafferty DM, et al.: Varying roles of Eselectin and P-selectin in different microvascular beds in response to antigen. J Immunol 1999, 162:1137–1143.

    CAS  PubMed  Google Scholar 

  48. Laudanna C, Constantin G: New models of intravital microscopy for analysis of chemokine receptor-mediated leukocyte vascular recognition. J Immunol Methods 2003, 273:115–123.

    Article  CAS  PubMed  Google Scholar 

  49. Engelhardt B, Vajkoczy P, Laschinger M: Detection of endothelial/lymphocyte interaction in spinal cord microvasculature by intravital videomicroscopy. Methods Mol Med 2003, 89:83–93.

    PubMed  Google Scholar 

  50. Johnston B, Butcher EC: Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 2002, 14:83–92.

    Article  CAS  PubMed  Google Scholar 

  51. Mackay CR: Chemokines: immunology’s high impact factors. Nat Immunol 2001, 2:95–101.

    Article  CAS  PubMed  Google Scholar 

  52. Alon R, Feigelson S: From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 2002, 14:93–104.

    Article  CAS  PubMed  Google Scholar 

  53. Chan JR, Hyduk SJ, Cybulsky MI: Detecting rapid and transient upregulation of leukocyte integrin affinity induced by chemokines and chemoattractants. J Immunol Methods 2003, 273:43–52.

    Article  CAS  PubMed  Google Scholar 

  54. Hughes PE, Oertli B, Hansen M, et al.: Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase. Mol Biol Cell 2002, 13:2256–2265.

    Article  CAS  PubMed  Google Scholar 

  55. Chigaev A, Blenc AM, Braaten JV, et al.: Real time analysis of the affinity regulation of alpha 4-integrin: the physiologically activated receptor is intermediate in affinity between resting and Mn(2+) or antibody activation. J Biol Chem 2001, 276:48670–48678.

    Article  CAS  PubMed  Google Scholar 

  56. Ganpule G, Knorr R, Miller JM, et al.: Low affinity of cell surface lymphocyte function-associated antigen-1 (LFA-1) generates selectivity for cell-cell interactions. J Immunol 1997, 159:2685–2692.

    CAS  PubMed  Google Scholar 

  57. Eugenin EA, Berman JW: Chemokine-dependent mechanisms of leukocyte trafficking across a model of the blood-brain barrier. Methods 2003, 29:351–361.

    Article  CAS  PubMed  Google Scholar 

  58. Persidsky Y: Model systems for studies of leukocyte migration across the blood - brain barrier. J Neurovirol 1999, 5:579–590.

    CAS  PubMed  Google Scholar 

  59. Gumbleton M, Audus KL: Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci 2001, 90:1681–1698.

    Article  CAS  PubMed  Google Scholar 

  60. Stins MF, Badger J, Sik KK: Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 2001, 30:19–28.

    Article  CAS  PubMed  Google Scholar 

  61. Igarashi Y, Utsumi H, Chiba H, et al.: Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun 1999, 261:108–112.

    Article  CAS  PubMed  Google Scholar 

  62. Lee SW, Kim WJ, Choi YK, et al.: SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 2003, 9:900–906.

    Article  CAS  PubMed  Google Scholar 

  63. Hurwitz AA, Berman JW, Rashbaum WK, et al.: Human fetal astrocytes induce the expression of blood-brain barrier specific proteins by autologous endothelial cells. Brain Res 1993, 625:238–243.

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi Y, Nomura M, Yamagishi S, et al.: Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 1997, 19:13–26.

    Article  CAS  PubMed  Google Scholar 

  65. Li JN, Baskaran H, Dertinger SK, et al.: Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 2002, 20:826–830.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callahan, M.K., Ransohoff, R.M. Analysis of leukocyte extravasation across the blood-brain barrier: Conceptual and technical aspects. Curr Allergy Asthma Rep 4, 65–73 (2004). https://doi.org/10.1007/s11882-004-0046-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0046-9

Keywords

Navigation