Skip to main content

Advertisement

Log in

Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

To identify the health risks of heavy metals and potential sources of children’s exposure to PM2.5, 36 students aged 9–12 were recruited in 2010 for a panel study in Tianjin, China. Si, Fe, Al, Mg, Ca, Ti, Zn, Pb, Mn, Cr, Ni, As, Cd, Co, nitrate (NO3 ), sulfate (SO4 2−), organic carbon (OC), and elemental carbon (EC) were analyzed. Potential health risks of heavy metals were calculated and sources were identified by positive matrix factorization (PMF). PM2.5 exposure to children in winter (122.4 μg m−3) was higher than in summer (74.7 μg m−3) (p < 0.05). The 14 elements, ions (NO3 and SO4 2−), OC, and EC represented 14, 38, 40, and 4 % and 19, 39, 31, and 7 % of PM2.5 mass in summer and winter, respectively. Average NO3 ⁄SO4 2− ratios were 2.3 and 0.6 in summer and winter, respectively, indicating a seasonal shift in the predominance of mobile and stationary sources. Cr and Mn posed the highest carcinogenic and non-carcinogenic risks, respectively. The integrated carcinogenic and non-carcinogenic risks were, respectively, 3.4 × 10−3 and 2.8 in summer and 4.1 × 10−3 and 4.9 in winter, which indicated that attention should be paid to both carcinogenic and non-carcinogenic risks of heavy metals for children. In summer, secondary sources, vehicle exhaust, crustal dust, industrial source, and vehicle additives contributed 30, 29, 13, 21, and 7 %, respectively, to children’s PM2.5 exposure, while in winter, the contributions of the first four sources together with coal combustion and road dust were 26, 24, 14, 10, 20, and 5 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8:166–175

    Article  CAS  Google Scholar 

  • Aschner M (2006) The transport of manganese across the blood-brain barrier. Neurocsi Toxicol 27:311–314

    CAS  Google Scholar 

  • Aucélio RQ, Martins de Souza R, Calixto de Campos R, Miekeley N, Porto da Silveira CL (2007) The determination of trace metals in lubricating oils by atomic spectrometry. Spectrochim Acta B At Spectrosc 62:952–961

    Article  Google Scholar 

  • Chan YC, Cohen DD, Hawas O, Stelcer E, Simpson R, Denison L et al (2008) Apportionment of sources of fine and coarse particles in four major Australian cities by positive matrix factorization. Atmos Environ 42:374–389

    Article  CAS  Google Scholar 

  • Chen C, Zhu ZJ, Liu D, Wang YY, Shen JC (2013) Characteristic and source apportionment of atmospheric PM2.5 in Zhengzhou. Environ Monit Chin 29:47–52 (In Chinese)

    CAS  Google Scholar 

  • Crist KC, Liu B, Kim M, Deshpande SR, John K (2008) Characterization of fine particulate matter in Ohio: indoor, outdoor, and personal exposures. Environ Res 106:62–71

    Article  CAS  Google Scholar 

  • Díaz RV, Dominguez ER (2009) Health risk by inhalation of PM2.5 in the metropolitan zone of the city of Mexico. Ecotoxicol Environ Saf 72:866–871

    Article  Google Scholar 

  • Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL et al (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J Am Med Assoc 295:1127–1134

    Article  CAS  Google Scholar 

  • Du X, Kong Q, Ge WH, Zhang SJ, Fu LX (2010) Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing. J Environ Sci 22:1757–1164

    Article  CAS  Google Scholar 

  • Duan JC, Tan JH (2013) Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos Environ 74:93–101

    Article  CAS  Google Scholar 

  • Fang GC, Huang YL, Huang JH (2010) Study of atmospheric metallic elements pollution in Asia during 2000–2007. J Hazard Mater 180:115–121

    Article  CAS  Google Scholar 

  • Gao X, Yang L, Cheng S, Gao R, Zhao Y, Xue L et al (2011) Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments. Atmos Environ 45:6048–6056

    Article  CAS  Google Scholar 

  • Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K et al (2004) The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 351:1057–1067

    Article  CAS  Google Scholar 

  • Gauvin S, Reungoat P, Cassadou S, Déchenaux J, Momas I, Just J et al (2002) Contribution of indoor and outdoor environments to PM2.5 personal exposure of children—VESTA study. Sci Total Environ 297:175–181

    Article  CAS  Google Scholar 

  • Han JB, Han B, Li PH, Kong SF, Bai ZP, Han DH et al (2014) Chemical characterizations of PM10 profiles for major emission sources in Xining, Northwestern China. Aerosol Air Qual Res 14:1017–1027

    CAS  Google Scholar 

  • Haynes EN, Ryan P, Chen A, Brown D, Roda S, Kuhnell P et al (2012) Assessment of personal exposure to manganese in children living near a ferromanganese refinery. Sci Total Environ 427–428:19–25

    Article  Google Scholar 

  • He QQ, Wong TW, Du L, Jiang ZQ, Gao Y, Qiu H et al (2010) Effects of ambient air pollution on lung function growth in Chinese schoolchildren. Respir Med 104:1512–1520

    Article  Google Scholar 

  • Hjortenkrans DST, Bergbäck BG, Häggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ Sci Technol 41:5224–5230

    Article  CAS  Google Scholar 

  • Horak F Jr, Studnicka M, Gartner C, Spengler JD, Tauber E, Urbanek R et al (2002) Particulate matter and lung function growth in children: a 3-years follow-up study in Austrian schoolchildren. Eur Respir J 19:838–845

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding ZH, Wang TJ, Lian HZ, Sun YY et al (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152

    Article  CAS  Google Scholar 

  • Huang YCT, Ghio AJ (2006) Vascular effects of ambient pollutant particles and metals. Curr Vasc Pharmacol 4:199–203

    Article  CAS  Google Scholar 

  • Huang J, Deng FR, Wu SW, Guo XB (2012) Comparisons of personal exposure to PM2.5 and CO by different commuting modes in Beijing, China. Sci Total Environ 425:52–59

    Article  CAS  Google Scholar 

  • Jahn HJ, Kraemer A, Chen XC, Chan CY (2013) Ambient and personal PM2.5 exposure assessment in the Chinese megacity of Guangzhou. Atmos Environ 74:402–411

    Article  CAS  Google Scholar 

  • Karanasiou AA, Siskos PA, Eleftheriadis K (2009) Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmos Environ 43:3385–3395

    Article  CAS  Google Scholar 

  • Kim BM, Teffera S, Zeldin MD (2000) Characterization of PM2.5 and PM10 in the South Coast Air Basin of southern California: part 1—spatial variations. J Air Waste Manage Assoc 50:2034–2044

    Article  CAS  Google Scholar 

  • Kim E, Larson TV, Hopke PK, Slaughter C, Sheppard LE, Claiborn C (2003) Source identification of PM2.5 in an arid northwest U.S. city by positive matrix factorization. Atmos Res 66:291–305

    Article  CAS  Google Scholar 

  • Koistinen KJ, Hänninen O, Rotko T, Edwards RD, Moschandreas D, Jantunen MJ (2001) Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS—Helsinki, Finland. Atmos Environ 35:2473–2481

    Article  CAS  Google Scholar 

  • Kong SF, Han B, Bai ZP, Chen L, Shi JW, Xu Z (2010) Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Sci Total Environ 408:4681–4694

    Article  CAS  Google Scholar 

  • Kong SF, Lu B, Ji YQ, Zhao XY, Bai ZP, Xu YH et al (2012) Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. J Environ Monit 14:791–803

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the risk. Environ Int 50:47–55

    Article  CAS  Google Scholar 

  • Larson T, Gould T, Simpson C, Liu LJS, Claiborn C, Lewtas J (2004) Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization. J Air Waste Manage Assoc 54:1175–1187

    Article  Google Scholar 

  • Li WF, Bai ZP (2009) Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology 7:432–437

    Article  CAS  Google Scholar 

  • Li PH, Kong SF, Geng CM, Han B, Lu B, Sun RF et al (2013) Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol Air Qual Res 13:255–265

    Google Scholar 

  • Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci Total Environ 425:176–183

    Article  CAS  Google Scholar 

  • Minguillón MC, Schembari A, Triguero-Mas M, de Nazelle A, Dadvand P, Figueras F et al (2012) Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmos Environ 59:426–436

    Article  Google Scholar 

  • Nikasinovic L, Just J, Sahraoui F, Seta N, Grimfeld A, Momas I (2006) Nasal inflammation and personal exposure to fine particles PM2.5 in asthmatic children. J Allergy Clin Immunol 117:1382–1388

    Article  CAS  Google Scholar 

  • Noullett M, Jackson PL, Brauer M (2006) Winter measurements of children’s personal exposure and ambient fine particle mass, sulphate and light absorbing components in a northern community. Atmos Environ 40:1971–1990

    Article  CAS  Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37:23–35

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1993) Analysis of different models of factor analysis as least squares fit problem. Chemom Intell Lab Syst 18:183–194

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Park D, Oh M, Yoon Y, Park E, Lee K (2012) Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmos Environ 49:180–185

    Article  CAS  Google Scholar 

  • Pekey H, Pekey B, Arslanbas D, Bozkurt ZB, Doğan G, Tuncel G (2013) Source apportionment of personal exposure to fine particulate matter and volatile organic compounds using positive matrix factorization. Water Air Soil Pollut 224:1403

    Article  Google Scholar 

  • Ramadan Z, Song XH, Hopke PK (2000) Identification of sources of Phoenix aerosol by positive matrix factorization. J Air Waste Manage Assoc 50:1308–1320

    Article  CAS  Google Scholar 

  • Reff A, Eberly SI, Bhave PV (2007) Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. J Air Waste Manage Assoc 57:146–154

    Article  CAS  Google Scholar 

  • Rodes CE, Lawless PA, Thornburg JW, Williams RW, Croghan CW (2010) DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmos Environ 44:1386–1399

    Article  CAS  Google Scholar 

  • Roy A, Hu W, Wei FS, Korn L, Chapman RS, Zhang JF (2012) Ambient particulate matter and lung function growth in Chinese children. Epidemiol 23:464–472

    Article  Google Scholar 

  • Schwartz J (2004) Air pollution and children’s health. Pediatrics 113:1037–1043

    Google Scholar 

  • Song Y, Zhang YH, Xie SD, Zeng LM, Zheng M, Salmon LG et al (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40:1526–1537

    Article  CAS  Google Scholar 

  • Srimuruganandam B, Shiva Nagendra SM (2012) Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere 88:120–130

    Article  CAS  Google Scholar 

  • Sun Y, Zhuang G, Wang Y, Han LH, Guo JH, Dan M et al (2004) The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources. Atmos Environ 38:5991–6004

    Article  CAS  Google Scholar 

  • Thielen A, Klus H, Müller L (2008) Tobacco smoke: unraveling a controversial subject. Exp Toxicol Pathol 60:141–156

    Article  CAS  Google Scholar 

  • Tian YZ, Shi GL, Han SQ, Zhang YF, Feng YC, Liu GR et al (2013) Vertical characteristics of levels and potential sources of water-soluble ions in PM10 in a Chinese megacity. Sci Total Environ 447:1–9

    Article  CAS  Google Scholar 

  • Tianjin Municipal Statistical Bureau (2011) Statistic yearbook of Tianjin 2011. China Statistical, Beijing (In Chinese)

    Google Scholar 

  • Turpin BJ, Weisel CP, Morandi M, Colome S, Stock T, Eisenreich S et al (2007) Relationship of indoor, outdoor, and personal air (RIOPA) part II. Analyses of concentrations of particulate matter species. Res Rep Health Eff Inst 130:1–92

    CAS  Google Scholar 

  • USEPA (2011a) Risk assessment guidance for superfund, volume Ι: human health evaluation manual (part F, supplemental guidance for inhalation risk assessment). Available on-line at: http://www.epa.gov/oswer/riskassessment/ragsf/pdf/partf_200901_final.pdf

  • USEPA (2011b) Regional screening level (RSL) resident air supporting table. Available on-line at: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/docs/resair_sl_table_run_MAY2014.pdf

  • Wang Y, Zhuang GS, Tang AH, Yuan H, Sun YL, Chen SA et al (2005) The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos Environ 39:3771–3784

    Article  CAS  Google Scholar 

  • Wang ZS, Wu T, Shi GL, Fu X, Tian YZ, Feng YC et al (2012) Potential source analysis for PM10 and PM2.5 in autumn in a northern city in China. Aerosol Air Qual Res 12:39–48

    CAS  Google Scholar 

  • Williams R, Creason J, Zweidinger R, Watts R, Sheldon L, Shy C (2000) Indoor, outdoor, and personal exposure monitoring of particulate air pollution: the Baltimore elderly epidemiology-exposure pilot study. Atmos Environ 34:4193–4204

    Article  CAS  Google Scholar 

  • Wu SW, Deng FR, Hao Y, Shima M, Wang X, Zheng CJ (2013) Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the healthy volunteer natural relocation study. J Hazard Mater 260:183–191

    Article  CAS  Google Scholar 

  • Yadav S, Satsangi PG (2013) Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ Monit Assess 185:7365–7379

    Article  CAS  Google Scholar 

  • Yang LX, Cheng SH, Wang XF, Nie W, Xu PJ, Gao XM (2013) Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmos Environ 75:265–269

    Article  CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2009) The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect 117:898–903

    Article  Google Scholar 

  • Zhao WX, Hopke PK, Gelfand EW, Rabinovitch N (2007) Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmos Environ 41:4084–4096

    Article  CAS  Google Scholar 

  • Zheng N, Liu JS, Wang QC, Liang ZZ (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, northeast of China. Sci Total Environ 408:726–733

    Article  CAS  Google Scholar 

  • Zhou J, Han B, Bai ZP, You Y, Zhang JF, Niu C et al (2012) Particle exposure assessment for community elderly (PEACE) in Tianjin, China: mass concentration relationships. Atmos Environ 49:77–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the participation of the children volunteers and my colleagues. This study was funded by the National Basic Research Program of China (Grant No. 2011CB503801) and National Natural Science Fund of China (Grant No. 20,977,054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Han, B., He, F. et al. Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Qual Atmos Health 8, 347–357 (2015). https://doi.org/10.1007/s11869-014-0289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-014-0289-0

Keywords

Navigation