Skip to main content
Log in

On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this pages, we discuss the problem of equivalence between fractional differential and integral problems. Although the said problem was studied for ordinary derivatives, it makes some troubles in the case of fractional derivatives. This paper dealing with the question revealing the equivalence between the boundary value problems for Caputo-type fractional differential equations and the corresponding integral form. One of our main part is to determine the scope of equivalence of such problems. However, with the help of appropriate examples, we will show that even for the Hölderian functions, but being off the space of absolutely continuous functions, the equivalence between the Caputo-type fractional differential problems and the corresponding integral forms can be lost. As a pursuit of this, we will show here that, the main results obtained by many researchers contained a common mathematical error in the proof of the equivalence of the boundary value problems for Caputo-type fractional differential equations and the corresponding integral forms. In this connection, we are going to slightly modify the definition of the Caputo-type fractional differential operator into a more suitable one. We will show that the modified definition is more convenient in studying the boundary value problems for Caputo-type fractional differential equations. As an application, after recalling some properties of the said (new) operator, we summarize our discussion by presenting an equivalence result for differential and integral problems for Caputo-type fractional derivatives and for the weak topology. In order to cover the full scope of this paper, we investigate the equivalence problem in case of multivalued fractional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., Henderson, J.: Weak solutions for implicit fractional differential equations of Hadamard type. Adv. Dyn. Syst. Appl. 11, 1–13 (2016)

    MathSciNet  Google Scholar 

  2. Abdalla, A.M., Cichoń, K., Salem, H.A.H.: On positive solutions of a system of equations generated by Hadamard fractional operators. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02702-0

    Article  MathSciNet  Google Scholar 

  3. Asawasamrit, S., Ntouyas, S., Tariboon, J., Nithiarayaphaks, W.W.: Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions. Symmetry 10, 701 (2018). https://doi.org/10.3390/sym10120701

    Article  MATH  Google Scholar 

  4. Agarwal, P., Choi, J.: Fractional calculus operators and their image formulas. J. Korean Math. Soc. 53(5), 1183–1210 (2016)

    Article  MathSciNet  Google Scholar 

  5. Agarwal, P., Choi, J., Paris, R.B.: Extended Riemann–Liouville fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 8, 451–466 (2015)

    Article  MathSciNet  Google Scholar 

  6. Agarwal, R.P., Lupulescu, V., O’Regan, D., Rahman, G.: Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann–Pettis integrals. Math. Nachr. 289, 395–409 (2016). https://doi.org/10.1002/mana.201400010

    Article  MathSciNet  MATH  Google Scholar 

  7. Ahmad, B., Ntouyas, S.K.: Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions. RACSAM Rev. R. Acad. Cienc. Exactas F’s. Nat. Ser. A Mat. 110, 159–172 (2016). https://doi.org/10.1007/s13398-015-0228-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahmad, B., Ntouyas, S.K.: An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions. Abstr. Appl. Anal. (2014), Art. ID 705809

  9. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: On nonlinear neutral Liouville–Caputo-type fractional differential equations with Riemann–Louville integral boundary conditions. J. Appl. Anal. (2019). https://doi.org/10.1515/jaa-2019-0013

    Article  MATH  Google Scholar 

  10. Benchohra, M., Hamania, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71, 2391–2396 (2009)

    Article  MathSciNet  Google Scholar 

  11. Benchohran, M., Graef, J., Mostefai, F.: Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces. Electron. J. Qual. Theory Differ. Equ. 54, 1–10 (2010)

    Article  MathSciNet  Google Scholar 

  12. Cichoń, M.: Weak solutions of differential equations in Banach spaces. Discuss. Math. Differ. Incl. Control Optim. 15, 5–14 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Cichoń, M.: On solutions of differential equations in Banach spaces. Nonlinear Anal. 60, 651–667 (2005). https://doi.org/10.1016/j.na.2004.09.041

    Article  MathSciNet  MATH  Google Scholar 

  14. Cichoń, M., Salem, H.A.H.: On the solutions of Caputo–Hadamard Pettis-type fractional differential equations. RACSAM Rev. R. Acad. Cienc. Exactas F’s. Nat. Ser. A Mat. 113, 3031–3053 (2019). https://doi.org/10.1007/s13398-015-0228-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Derbazi, C., Hammochi, H., Benchohra, M.: Weak solutions for some nonlinear fractional differential equations with fractional integral boundary conditions. J. Nonlinear Funct. Anal. (2019), Art. ID 7

  16. Dilworth, J., Girardi, M.: Nowhere weak differentiability of the Pettis integral. Quaest. Math. 18, 365–380 (1995)

    Article  MathSciNet  Google Scholar 

  17. Egea, S.M., Topala, F.S.: Existence of multiple positive solutions for semipositone fractional boundary value problems. Filomat 33(3), 749–759 (2019)

    Article  MathSciNet  Google Scholar 

  18. Geitz, R.F.: Pettis integration. Proc. Am. Math. Soc. 82, 81–86 (1981)

    Article  MathSciNet  Google Scholar 

  19. Gou, H., Li, Y.: Weak solutions for fractional differential equations via Henstock–Kurzweil–Pettis integrals. IJNSNS (2019). https://doi.org/10.1515/ijnsns-2018-0174

    Article  MATH  Google Scholar 

  20. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    Article  MathSciNet  Google Scholar 

  21. Jarnik, J., Kurzweil, J.: Integral of multivalued mappings and its connection with differential relations. Časopis pro Pěst. Matematiky 108, 8–28 (1983)

    Article  MathSciNet  Google Scholar 

  22. Katatbeha, Q., Al-Omar, A.: Existence and uniqueness of mild and classical solutions to fractional order Hadamard-type Cauchy problem. J. Nonlinear Sci. Appl. 9, 827–835 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  24. Kiymaz, I.O., Çetinkaya, A., Agarwal, P.: An extension of Caputo fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 9, 3611–3621 (2016)

    Article  MathSciNet  Google Scholar 

  25. Krasnosel’skii, M.A., Rutitskii, Yu.: Convex Functions and Orlicz Spaces. Noordhoff, Gröningen (1961)

    MATH  Google Scholar 

  26. Li, B., Gou, H.: Weak solutions nonlinear fractional integrodifferential equations in nonreflexive Banach spaces. Bound. Value Prob. (2016), Art. No. 209

  27. Musiał, K.: Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 23, 177–262 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Naralenkov, K.: On Denjoy type extension of the Pettis integral. Czechoslov. Math. J. 60(135), 737–750 (2010)

    Article  MathSciNet  Google Scholar 

  29. Ntouyas, S.K., Tariboon, J.: Boundary value problems for fractional differential equations and inclusions with nonlocal and Riemann–Louville integral boundary conditions. Commun. Appl. Anal. 19, 605–622 (2015)

    Google Scholar 

  30. O’Regan, D., Stanek, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71, 641–652 (2013)

    Article  MathSciNet  Google Scholar 

  31. Pazy, A.: A class of semi-linear equations of evolution. Isr. J. Math. 20, 23–36 (1975)

    Article  MathSciNet  Google Scholar 

  32. Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44, 277–304 (1938)

    Article  MathSciNet  Google Scholar 

  33. Ross, B., Samko, S.G., Love, E.R.: Functions that have no first order derivative might have fractional derivatives of any order less than one. Real Anal. Exch. 20, 140–157 (1994)

    Article  Google Scholar 

  34. Salem, H.A.H.: On the fractional order \(m\)-point boundary value problem in reflexive Banach spaces and weak topologies. J. Comput. Appl. Math. 224, 565–572 (2009)

    Article  MathSciNet  Google Scholar 

  35. Salem, H.A.H.: On the fractional calculus in abstract spaces and their applications to the Dirichlet-type problem of fractional order. Comput. Math. Appl. 59, 1278–1293 (2010)

    Article  MathSciNet  Google Scholar 

  36. Salem, H.A.H.: On the theory of fractional calculus in the Pettis-function spaces. J. Funct. Spaces (2018), Art. ID 8746148

  37. Salem, H.A.H.: On functions without pseudo derivatives having fractional pseudo derivatives. Quaest. Math. 42, 1237–1252 (2019). https://doi.org/10.2989/16073606.2018.1523247

    Article  MathSciNet  MATH  Google Scholar 

  38. Salem, H.A.H.: Weakly absolutely continuous functions without weak, but fractional weak derivatives. J. Pseudo Diff. Oper. Appl. 10, 941–954 (2019). https://doi.org/10.1007/s11868-019-00274-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Salem, H.A.H.: Hadamard-type fractional calculus in Banach spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113, 987–1006 (2019). https://doi.org/10.1007/s13398-018-0531-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Salem, H.A.H., Cichoń, M.: On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces. J. Funct. Spaces Appl. 1, 2 (2013). https://doi.org/10.1155/2013/428094

    Article  MathSciNet  MATH  Google Scholar 

  41. Salem, H.A.H., Cichoń, M.: Second order three-point boundary value problems in abstract spaces. Acta Math. Appl. Sin. Engl. Ser. 30, 1131–1152 (2014). https://doi.org/10.1007/s10255-014-0429-1

    Article  MathSciNet  MATH  Google Scholar 

  42. Salem, H.A.H., El-Sayed, A.M.A., Moustafa, O.L.: A note on the fractional calculus in Banach spaces. Stud. Sci. Math. Hungar. 42, 115–130 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Salem, H.A.H., Väth, M.: An abstract Gronwall lemma and application to global existence results for functional differential and integral equations of fractional order. J. Integral Equ. Appl. 16, 411–429 (2004)

    Article  MathSciNet  Google Scholar 

  44. Samko, S., Kilbas, A., Marichev, O.L.: Fractional Integrals and Derivatives. Gordon and Breach Science Publisher, Washington (1993)

    MATH  Google Scholar 

  45. Shammakh, W.: A study of Caputo-Hadamard-type fractional differential equations with nonlocal boundary conditions. J. Funct. Spaces (2016), Art. ID 7057910

  46. Solomon, D.: On differentiability of vector-valued functions of a real variables. Stud. Math. 29, 1–4 (1967)

    Article  MathSciNet  Google Scholar 

  47. Solomon, D.W.: Denjoy Integration in Abstract Spaces. Memoirs of the American Mathematical Society (1969)

  48. Tariboon, J., Cuntavepanit, A., Ntouyas, S.K., Nithiarayaphaks, W.: Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations. J. Funct. Spaces 1, 2 (2018). https://doi.org/10.1155/2018/6974046

    Article  MathSciNet  MATH  Google Scholar 

  49. Thiramanus, P., Ntouyas, S.K., Tariboon, J.: Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 2016, 83 (2016)

    Article  MathSciNet  Google Scholar 

  50. Vivek, D., Kanagarajan, K., Sivasundaram, S.: On the behavior of solutions of Hilfer-Hadamard-type fractional neutral pantograph equations with nonlocal boundary conditions. Commun. Appl. Anal. 22, 211–232 (2018)

    Google Scholar 

  51. Wang, G., Liu, S., Zhang, L.: Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions. Abstr. Appl. Anal. 2014, Art. ID 916260, (2014)

  52. Yukunthorn, W., Suantai, S., Ntouyas, S.K., Tariboon, J.: Boundary value problems for impulsive multi-order Hadamard fractional differential equations. Bound. Value Probl. 2015, 148 (2015)

    Article  MathSciNet  Google Scholar 

  53. Zhai, C., Wang, W., Hongyu, L.: A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions. J. Inequal. Appl. (2018). https://doi.org/10.1186/s13660-018-1801-0

    Article  MathSciNet  Google Scholar 

  54. Zhang, X., Liu, Z., Peng, H., Zhang, X., Yang, S.: The general solution of differential equations with Caputo–Hadamard fractional derivatives and noninstantaneous impulses. Adv. Math. Phys. (2017). https://doi.org/10.1155/2017/3094173

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein A. H. Salem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cichoń, M., Salem, H.A.H. On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems. J. Pseudo-Differ. Oper. Appl. 11, 1869–1895 (2020). https://doi.org/10.1007/s11868-020-00345-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-020-00345-z

Keywords

Mathematics Subject Classification

Navigation