Skip to main content
Log in

Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper we derive asymptotic-in-time linear estimates in Hardy spaces \(H^p(\mathbb {R}^{n})\) for the Cauchy problem for evolution operators with structural dissipation. The obtained estimates are a natural extension of the known \(L^p-L^q\) estimates, \(1\le p\le q\le \infty \), for these models. Different, standard, tools to work in Hardy spaces, are used to derive optimal estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, J., Fan, D., Zhang, C.: Space-time estimates on damped fractional wave equation. Abstr. Appl. Anal. (2014). doi:10.1155/2014/428909

  2. D’Abbicco, M., Ebert, M.R.: Diffusion phenomena for the wave equation with structural damping in the \(L^p-L^q\) framework. J. Differ. Equ. 256, 2307–2336 (2014). doi:10.1016/j.jde.2014.01.002

    Article  MathSciNet  MATH  Google Scholar 

  3. D’Abbicco, M., Ebert, M.R.: A classification of structural dissipations for evolution operators. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3713

  4. D’Abbicco, M., Reissig, M.: Semilinear structural damped waves. Math. Methods Appl. Sci. 37, 1570–1592 (2014). doi:10.1002/mma.2913

    Article  MathSciNet  MATH  Google Scholar 

  5. Fefferman, C., Stein, E.: \(H^{p}\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garcia-Cuerva, J., De Francia, J.L.R.: Weighted Norm Inequalities and Related Topics. Elsevier Science Publishers, Amsterdam (1985)

    MATH  Google Scholar 

  7. Ikehata, R.: New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Methods Appl. Sci. 27, 865–889 (2004). doi:10.1002/mma.476

    Article  MathSciNet  MATH  Google Scholar 

  8. Ikehata, R.: Asymptotic profiles for wave equations with strong damping. J. Differ. Equ. 257, 2159–2177 (2014). doi:10.1016/j.jde.2014.05.031

    Article  MathSciNet  MATH  Google Scholar 

  9. Ikehata, R., Natsume, M.: Energy decay estimates for wave equations with a fractional damping. Differ. Integral Equ. 25, 939–956 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Ikehata, R., Soga, M.: Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Commun. Pure Appl. Anal. 14, 1759–1780 (2015). doi:10.3934/cpaa.2015.14.1759

    Article  MathSciNet  MATH  Google Scholar 

  11. Ikehata, R., Todorova, G., Yordanov, B.: Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254, 3352–3368 (2013). doi:10.1016/j.jde.2013.01.023

    Article  MathSciNet  MATH  Google Scholar 

  12. Karch, G.: Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Stud. Math. 143, 175–197 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Matthes, S., Reissig, M.: Qualitative properties of structurally damped wave models. Eurasian Math. J. 3, 84–106 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Miyachi, A.: On some Fourier multipliers for \(H^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 157–179 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Miyachi, A.: On some estimates for the wave equation in \(L^p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 331–354 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Miyakawa, T.: Hardy spaces of solenoidal vector fields, with applications to the Navier–Stokes equations. Kyushu J. Math. 50, 1–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Narazaki, T.: \(L^p-L^q\) estimates for damped wave equations and their applications to semilinear problem. J. Math. Soc. Jpn. 56, 586–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narazaki, T., Reissig, M.: \(L^1\) estimates for oscillating integrals related to structural damped wave models. In: Cicognani, M., Colombini, F., Del Santo, D. (eds.), Studies in Phase Space Analysis with Applications to PDEs, Progress in Nonlinear Differential Equations and Their Applications, pp. 215–258. Birkhäuser (2013)

  19. Nishihara, K.: \(L^p-L^q\) estimates for solutions to the damped wave equations in 3-dimensional space and their applications. Math. Z. 244, 631–649 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Peral, J.: \(L^{p}\) estimates for the wave Equation. J. Funct. Anal. 36, 114–145 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418 (1985). doi:10.1016/0362-546X(85)90001-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Shibata, Y.: On the rate of decay of solutions to linear viscoelastic equation. Math. Methods Appl. Sci. 23, 203–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  25. Triebel, H.: Theory of Function Spaces. Monographs in Math. 78. Birkhauser, Basel (1983)

    Book  Google Scholar 

  26. Wirth, J.: Asymptotic properties of solutions to wave equations with time-dependent dissipation. PhD Thesis, TU Bergakademie Freiberg (2005)

Download references

Acknowledgments

The authors M. D’Abbicco and T. Picon are supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), JP - Programa Jovens Pesquisadores em Centros Emergentes, respectively by Grants 2013/15140-2 and 2014/02713-7, and by Grant 2013/17636-5. The author M. R. Ebert was partially supported by FAPESP Grant 2013/20297-8. The first author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D’Abbicco.

Appendix: Some results about Hardy spaces

Appendix: Some results about Hardy spaces

We recall how the Hardy spaces \(H^p({\mathbb {R}}^n)\) are presented by Fefferman and Stein in [5]. Fix, once for all, a radial nonnegative function \(\varphi \in C_{c}^{\infty }({\mathbb {R}}^n)\) supported in the unit ball with integral equal to 1. For \(u\in \mathcal {S}'({\mathbb {R}}^n)\) we define the maximal function \(M_{\varphi }u\) by

$$\begin{aligned} M_{\varphi }u(x)=\sup _{0<t<\infty }|(u*\varphi _t)(x)|, \end{aligned}$$

where \(\varphi _t(x)=t^{-n}\varphi (x/t)\).

Definition 4

Let \(0<p<\infty \). A tempered distribution \(u\in \mathcal {S}'({\mathbb {R}}^n)\) belongs to \(H^p({\mathbb {R}}^n)\) if and only if \(M_{\varphi }u\in L^p({\mathbb {R}}^n)\), i.e.,

$$\begin{aligned} \Vert u\Vert _{H^p}\doteq \Vert M_{\varphi }u\Vert _{L^p}<\infty . \end{aligned}$$

For \(p=\infty \), we set \(H^\infty ({\mathbb {R}}^n)=L^\infty ({\mathbb {R}}^n)\).

The spaces \(H^p({\mathbb {R}}^n)\) are independent of the choice of \(\varphi \in C_{c}^{\infty }({\mathbb {R}}^n)\) with \(\int _{{\mathbb {R}}^n} \varphi (x)\,dx\ne 0\). For \(p=1\), \(\Vert u\Vert _{H^1}\) is a norm and \(H^1({\mathbb {R}}^n)\) is a normed space densely contained in \(L^1({\mathbb {R}}^n)\). For \(p>1\), \(\Vert u\Vert _{H^p}\) is a norm equivalent to the usual \(L^p\) norm and we denote \(H^p({\mathbb {R}}^n)=L^p({\mathbb {R}}^n)\), by abusing notation. For \(0<p\le 1\), the space \(H^p({\mathbb {R}}^n)\) is a complete metric space with the distance

$$\begin{aligned} d(u,v)=\Vert u-v\Vert _{H^p}^p, \quad u,v\in H^p({\mathbb {R}}^{n}). \end{aligned}$$

Although \(H^p({\mathbb {R}}^n)\) is not locally convex for \(0<p<1\) and \(\Vert u\Vert _{H^p}\) is not truly a norm (it is a quasi-norm [25]), we will still refer to \(\Vert u\Vert _{H^p}\) as the “norm” of u, as it is customary.

A useful property of Hardy spaces is a pointwise estimate for the Fourier transform of \(H^p\) functions, with \(p\in (0,1]\) (see Corollary 7.21 in [6]):

$$\begin{aligned} |\hat{f}(\xi )| \lesssim {\left| \xi \right| }^{n\left( \frac{1}{p}-1\right) }\,\Vert f\Vert _{H^p}, \qquad p\in (0,1]. \end{aligned}$$
(77)

Moreover, the following integral estimate holds (see [24], page 128):

$$\begin{aligned} \left( \int _{\mathbb {R}^n} {\left| \xi \right| }^{n\left( p-2\right) }\,|\hat{f}(\xi )|^p\,d\xi \right) ^{\frac{1}{p}}\lesssim \Vert f\Vert _{H^p}, \qquad p\in (0,1]. \end{aligned}$$
(78)

Now let us present some standard tools in Hardy spaces. First we recall the real interpolation due to Fefferman, Riviera and Sagher (see Remark 1, page 66 in [25] for more details).

Theorem 6

(Real interpolation) Let \(0<p_{0}<p<p_{1}\le \infty \), and \(\theta \in (0,1)\) be such that \(p^{-1}\;\doteq \;\theta p^{-1}_{0}+ (1-\theta )p^{-1}_{1}\). Then, there exists \(C=C(p_{0},p_{1},\theta ,n)>0\) such that

$$\begin{aligned} \Vert u\Vert _{H^{p}(\mathbb {R}^{n})}\le C\Vert u\Vert ^{\theta }_{H^{p_{0}}(\mathbb {R}^{n})}\Vert u\Vert ^{1-\theta }_{H^{p_{1}}(\mathbb {R}^{n})}. \end{aligned}$$

Let \(K \in \mathcal {S}'(\mathbb {R}^{n})\) be a tempered distribution and consider the convolution operator \(T:\mathcal {S}(\mathbb {R}^{n}) \rightarrow \mathcal {S}(\mathbb {R}^{n})\) given by \(Tf=K *f\). The operator T may also be written as \(\widehat{Tf}(\xi )=m(\xi )\widehat{f}(\xi )\) where \(m=\widehat{K} \in \mathcal {S}'(\mathbb {R}^{n})\) is the Fourier transform of K. To simplify the notation we rename the operator as \(T_{m}\). In this work two important ingredients will be used for the boundedness of operators acting on \(H^{p}(\mathbb {R}^{n})\).

The first ingredient is a version of the celebrated Mikhlin-Hörmander multiplier theorem for Hardy spaces (see [14]; see also page 232 in [23]).

Theorem 7

Let \(0<p<\infty \) and \(k=\max { \left\{ [n(1/p-1/2)]+1,[n/2]+1 \right\} }\). Suppose that \(m \in \mathcal C^{k}(\mathbb {R}^{n}\backslash \left\{ 0 \right\} )\) and

$$\begin{aligned} \left| \partial _\xi ^{\beta }m(\xi )\right| \le C\, |\xi |^{-|\beta |}, \quad |\beta |\le k. \end{aligned}$$

Then \(T_{m}\) is continuously bounded from \(H^{p}(\mathbb {R}^{n})\) into itself.

Variants of this theorem assuming conditions on the support of \(m(\xi )\) can be found in [14]. In particular, we recall the following result, which is derived from a special case of Theorem 2 in [14].

Theorem 8

Let \(p\in (0,2)\) and \(k=\max \left\{ [n(1/p-1/2)]+1,[n/2]+1 \right\} \). Suppose that \(m \in \mathcal C^{k}(\mathbb {R}^{n}\backslash \left\{ 0\right\} )\), \(m(\xi )=0\) if \(|\xi |\ge 1\), and

$$\begin{aligned} \left| \partial _\xi ^{\beta }m(\xi )\right| \le C\,(A|\xi |^{-1})^{|\beta |}, \quad |\beta |\le k, \end{aligned}$$

with some constant \(A\ge 1\). Then \(T_{m}\) is bounded from \(H^{p}(\mathbb {R}^{n})\) into itself and

$$\begin{aligned} \Vert T_{m}f\Vert _{H^{p}(\mathbb {R}^{n})}\le C\, A^{n \left( \frac{1}{p}-\frac{1}{2} \right) }\Vert f\Vert _{H^{p}(\mathbb {R}^{n})}. \end{aligned}$$

We conclude this appendix recalling an important version of \(L^{p}-L^{q}\) estimates for fractional integration in the context of Hardy spaces (page 135 in [24]). Let \(I_r\) be the Riesz potential with order \(r>0\), defined by means of \(I_rf(\xi )\doteq \mathfrak {F}^{-1}(|\xi |^{-r}\mathfrak F f(\xi ))\). We notice that \(I_r(I_s f)=I_{r+s}f\). If \(r\in (0,n)\), the Riesz potential may be represented for sufficiently smooth f by

$$\begin{aligned} I_r f (x) = c_{n,r} \int _{\mathbb {R}^n}\frac{f(y)}{|x-y|^{n-r}}\,dy, \end{aligned}$$

for suitable \(c_{n,r}\).

Theorem 9

Consider \(r>0\) and \(0<p<n/r\). Then, there exists \(C=C(r,p)>0\) such that

$$\begin{aligned} \Vert I_{r}f\Vert _{H^{q}(\mathbb {R}^{n})}\le C \Vert f\Vert _{H^{p}(\mathbb {R}^{n})}, \qquad \frac{1}{q}=\frac{1}{p}-\frac{r}{n}\,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Abbicco, M., Ebert, M.R. & Picon, T. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. J. Pseudo-Differ. Oper. Appl. 7, 261–293 (2016). https://doi.org/10.1007/s11868-015-0141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-015-0141-9

Keywords

Mathematics Subject Classification

Navigation