Skip to main content

Advertisement

Log in

Biology and Treatment Paradigms in T Cell Acute Lymphoblastic Leukemia in Older Adolescents and Adults

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

T cell acute lymphoblastic leukemia (T-ALL) occurs in approximately 25–30% of adult ALL diagnoses. Historically, B cell ALL (B-ALL) and T-ALL have been treated in the same fashion despite differences in the biology of disease. Outcomes in the adolescent/young adult (AYA) population have improved significantly with the utilization of pediatric-based regimens. In addition, there may now be a role for the addition of nelarabine to frontline treatment in the AYA population. In older adults, choices in which regimen to pursue should account for the potential toxicities associated with pediatric-based regimens. Measurable residual disease (MRD) has taken on increasing prognostic value in T-ALL and may help to identify which patients should receive an allogeneic stem cell transplant. T cell lymphoblastic lymphoma (T-LBL) has traditionally been treated similarly to T-ALL, but additional management questions must be considered. Mediastinal irradiation does not seem to clearly improve outcomes, and there is considerable heterogeneity in the central nervous system (CNS) prophylaxis strategy used in prospective trials. CNS prophylaxis in AYA patients with T-ALL, on the other hand, can be safely achieved with intrathecal chemotherapy alone. Prospective data regarding CNS prophylaxis strategies in older adults are currently not available. Nelarabine-based regimens currently remain the standard in relapsed/refractory T-ALL; however, novel therapies targeting molecular aberrations in T-ALL are actively being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  2. You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2015;144(3):411–22.

    Article  CAS  PubMed  Google Scholar 

  3. Marks DI, Paietta EM, Moorman AV, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114(25):5136–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23 Review article summarizing the recurring genetic and molecular aberrations in T-ALL while providing pathogenic and therapeutic context.

    Article  CAS  PubMed  Google Scholar 

  5. Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3398–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20(9):1496–510.

    Article  CAS  PubMed  Google Scholar 

  7. Moorman AV, Harrison CJ, Buck GAN, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematol Am Soc Hematol Educ Program. 2009;1:353–61.

  10. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  CAS  PubMed  Google Scholar 

  11. Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999;10(5):547–58.

    Article  CAS  PubMed  Google Scholar 

  12. Tanigaki K, Honjo T. Regulation of lymphocyte development by Notch signaling. Nat Immunol. 2007;8(5):451–6.

    Article  CAS  PubMed  Google Scholar 

  13. Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. Annu Rev Pathol. 2008;3:587–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Neil J, Grim J, Strack P, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Van der Meulen J, Van Roy N, Van Vlierberghe P, Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol. 2014;53:547–57.

    Article  PubMed  CAS  Google Scholar 

  16. Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol. 2013;31(34):4333–42.

    Article  CAS  PubMed  Google Scholar 

  17. Beldjord K, Chevret S, Asnafi V, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49.

    Article  CAS  PubMed  Google Scholar 

  18. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wood BL, Winter SS, Dunsmore KP, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood. 2014;124(21):1.

  20. •• Jain N, Lamb AV, O’Brien S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9 Single-center retrospective analysis of patients with T-ALL treated with frontline chemotherapy which highlights ETP-ALL as a high-risk subgroup with inferior overall survival in comparison to other T-ALL patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pui C-H, Yang JJ, Hunger SP, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33(27):2938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Curran E, Stock W. How I treat acute lymphoblastic leukemia in older adolescents and young adults. Blood. 2015;125(24):3702–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood. 1995;85(8):2025–37.

    Article  CAS  PubMed  Google Scholar 

  25. Stock W, La M, Sanford B, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood. 2008;112(5):1646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tricoli JV, Blair DG, Anders CK, et al. Biologic and clinical characteristics of adolescent and young adult cancers: acute lymphoblastic leukemia, colorectal cancer, breast cancer, melanoma, and sarcoma. Cancer. 2016;122(7):1017–28.

    Article  PubMed  Google Scholar 

  27. Boissel N, Baruchel A. Acute lymphoblastic leukemia in adolescent and young adults: treat as adults or as children? Blood. 2018;132(4):351–61.

    Article  CAS  PubMed  Google Scholar 

  28. Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8.

    Article  CAS  PubMed  Google Scholar 

  29. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia. 1999;13(3):335–42.

    Article  CAS  PubMed  Google Scholar 

  30. Silverman LB, Supko JG, Stevenson KE, et al. Intravenous PEG-asparaginase during remission induction in children and adolescents with newly diagnosed acute lymphoblastic leukemia. Blood. 2010;115(7):1351–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Appel IM, Kazemier KM, Boos J, et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia. 2008;22(9):1665–79.

    Article  CAS  PubMed  Google Scholar 

  32. Pieters R, den Boer ML, Durian M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia—implications for treatment of infants. Leukemia. 1998;12(9):1344–8.

    Article  CAS  PubMed  Google Scholar 

  33. Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32(3):606–15.

    Article  CAS  PubMed  Google Scholar 

  34. DeAngelo DJ, Stevenson KE, Dahlberg SE, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29(3):526–34.

    Article  CAS  PubMed  Google Scholar 

  35. •• Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59 Multi-center prospective trial led by the Alliance evaluating a pediatric-inspired ALL regimen in patients aged 18-39 that demonstrated low toxicity rates and improved overall survival compared to historical data. This was seen in the T-ALL subset of patients as well.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. •• Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36(29):2926–34 Multi-center prospective trial led by the COG evaluating high-dose methotrexate versus Capizzi methotrexate in T-ALL patients ages 1–31. Superior 5-year disease-free survival and overall survival was noted in the Capizzi methotrexate group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol. 2009;27(6):911–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ribera J-M, Oriol A, Sanz M-A, et al. Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Español de Tratamiento en Hematología pediatric-based protocol ALL-96. J Clin Oncol. 2008;26(11):1843–9.

    Article  CAS  PubMed  Google Scholar 

  39. Rytting ME, Jabbour EJ, Jorgensen JL, et al. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Münster, in adolescents and young adults with acute lymphoblastic leukemia, and comparison to the hyper-CVAD regimen. Am J Hematol. 2016;91(8):819–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group study AALL0232. J Clin Oncol. 2016;34(20):2380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quist-Paulsen P, Toft N, Heyman M, et al. T-cell acute lymphoblastic leukemia in patients 1-45 years treated with the pediatric NOPHO ALL2008 protocol. Leukemia. 2019. https://doi.org/10.1038/s41375-019-0598-2. A population-based study using a pediatric protocol in ALL patients aged 1–45. Those with MRD ≥ 5% on day 29 or ≥0.1% after consolidation were assigned to allogeneic stem cell transplant. 5-year overall survival for T-ALL patients was 75%.

  42. Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801.

    Article  CAS  PubMed  Google Scholar 

  43. Yilmaz M, Kantarjian H, Jabbour E. Treatment of acute lymphoblastic leukemia in older adults: now and the future. Clin Adv Hematol Oncol. 2017;15(4):266–74.

    PubMed  Google Scholar 

  44. Kako S, Akahoshi Y, Harada N, et al. Meta-analysis and meta-regression analysis to compare the outcomes of chemotherapy for T- and B-lineage acute lymphoblastic leukemia (ALL): the use of dexamethasone, L-asparaginase, and/or methotrexate may improve the outcome of T-lineage ALL. Ann Hematol. 2016;95(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  45. Kozlowski P, Åström M, Ahlberg L, et al. High relapse rate of T cell acute lymphoblastic leukemia in adults treated with Hyper-CVAD chemotherapy in Sweden. Eur J Haematol. 2014;92(5):377–81.

    Article  PubMed  Google Scholar 

  46. Kota VK, Hathaway AR, Shah BD, et al. Poor outcomes with hyper CVAD induction for T-cell lymphoblastic leukemia/lymphoma. Blood. 2015;126(23):3762.

    Article  Google Scholar 

  47. Derman BA, Streck M, Wynne J, et al. Efficacy and toxicity of reduced vs. standard dose pegylated asparaginase in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia. Leuk Lymphoma. 2020;61(3):614–22.

  48. Ram R, Gafter-Gvili A, Vidal L, et al. Management of adult patients with acute lymphoblastic leukemia in first complete remission: systematic review and meta-analysis. Cancer. 2010;116(14):3447–57.

    Article  PubMed  Google Scholar 

  49. Bakr M, Rasheed W, Mohamed SY, et al. Allogeneic hematopoietic stem cell transplantation in adolescent and adult patients with high-risk T cell acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2012;18(12):1897–904.

    Article  PubMed  Google Scholar 

  50. • Hamilton BK, Rybicki L, Abounader D, et al. Allogeneic hematopoietic cell transplantation for adult T cell acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2017;23(7):1117–21 Retrospective analysis of 208 T-ALL patients that underwent allogeneic stem cell transplant. Use of TBI was associated with improved survival while age >35 and R/R disease at time of transplant were associated with worse survival.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cahu X, Labopin M, Giebel S, et al. Impact of conditioning with TBI in adult patients with T-cell ALL who receive a myeloablative allogeneic stem cell transplantation: a report from the acute leukemia working party of EBMT. Bone Marrow Transplant. 2016;51(3):351–7.

    Article  CAS  PubMed  Google Scholar 

  52. Bond J, Graux C, Lhermitte L, et al. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a Group for Research on Adult Acute Lymphoblastic Leukemia study. J Clin Oncol. 2017;35(23):2683–91.

    Article  CAS  PubMed  Google Scholar 

  53. Gökbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–76.

    Article  PubMed  CAS  Google Scholar 

  54. • Brammer JE, Saliba RM, Jorgensen JL, et al. Multi-center analysis of the effect of T-cell acute lymphoblastic leukemia subtype and minimal residual disease on allogeneic stem cell transplantation outcomes. Bone Marrow Transplant. 2017;52(1):20–7 Multi-center retrospective analysis on the impact of T-ALL subtype and MRD on allogeneic transplant outcomes. MRD positivity was associated with higher rates of progression; ETP subtype was not associated with worse outcomes.

    Article  CAS  PubMed  Google Scholar 

  55. Flohr T, Schrauder A, Cazzaniga G, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771–82.

    Article  CAS  PubMed  Google Scholar 

  56. Modvig S, Madsen HO, Siitonen SM, et al. Minimal residual disease quantification by flow cytometry provides reliable risk stratification in T-cell acute lymphoblastic leukemia. Leukemia. 2019;33(6):1324–36.

    Article  CAS  PubMed  Google Scholar 

  57. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  58. Raetz EA, Perkins SL, Bhojwani D, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47(2):130–40.

    Article  PubMed  Google Scholar 

  59. Bonn BR, Huge A, Rohde M, et al. Whole exome sequencing hints at a unique mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol. 2015;168(2):308–13.

    Article  CAS  PubMed  Google Scholar 

  60. Hoelzer D, Gökbuget N. T-cell lymphoblastic lymphoma and T-cell acute lymphoblastic leukemia: a separate entity? Clin Lymphoma Myeloma. 2009;9(Suppl 3):S214–21.

    Article  PubMed  Google Scholar 

  61. Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol. 2016;96(5):447–60.

    Article  PubMed  Google Scholar 

  62. Hoelzer D, Gökbuget N, Digel W, et al. Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood. 2002;99(12):4379–85.

    Article  CAS  PubMed  Google Scholar 

  63. Ellin F, Jerkeman M, Hagberg H, Relander T. Treatment outcome in T-cell lymphoblastic lymphoma in adults–a population-based study from the Swedish Lymphoma Registry. Acta Oncol. 2014;53(7):927–34.

    Article  CAS  PubMed  Google Scholar 

  64. Dabaja BS, Ha CS, Thomas DA, et al. The role of local radiation therapy for mediastinal disease in adults with T-cell lymphoblastic lymphoma. Cancer. 2002;94(10):2738–44.

    Article  PubMed  Google Scholar 

  65. • Lepretre S, Touzart A, Vermeulin T, et al. Pediatric-like acute lymphoblastic leukemia therapy in adults with lymphoblastic lymphoma: the GRAALL-LYSA LL03 study. J Clin Oncol. 2016;34(6):572–80 A prospective phase II study in adults ages 18-59 with LBL treated with a pediatric-based ALL regimen. 131 patients had T-LBL and 3-year overall survival was 69.2%. This regimen did not use mediastinal irradiation.

    Article  CAS  PubMed  Google Scholar 

  66. Becker S, Vermeulin T, Cottereau A-S, Boissel N, Vera P, Lepretre S. Predictive value of 18F-FDG PET/CT in adults with T-cell lymphoblastic lymphoma: post hoc analysis of results from the GRAALL-LYSA LLO3 trial. Eur J Nucl Med Mol Imaging. 2017;44(12):2034–41.

    Article  CAS  PubMed  Google Scholar 

  67. Lazarus HM, Richards SM, Chopra R, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood. 2006;108(2):465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy. Br J Haematol. 2017;176(2):157–67.

    Article  PubMed  Google Scholar 

  69. Nathan PC, Maze R, Spiegler B, Greenberg ML, Weitzman S, Hitzler JK. CNS-directed therapy in young children with T-lineage acute lymphoblastic leukemia: high-dose methotrexate versus cranial irradiation. Pediatr Blood Cancer. 2004;42(1):24–9.

    Article  PubMed  Google Scholar 

  70. Laver JH, Barredo JC, Amylon M, et al. Effects of cranial radiation in children with high risk T cell acute lymphoblastic leukemia: a Pediatric Oncology Group report. Leukemia. 2000;14(3):369–73.

    Article  CAS  PubMed  Google Scholar 

  71. Pui C-H, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360(26):2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Jeha S, Pei D, Choi J, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J Clin Oncol. 2019;37(35):3377–91 Analysis of pediatric ALL patients treated on St. Jude Total Therapy Study 16 noted additional intrathecal chemotherapy during induction improved CNS control of disease without increased toxicity in high-risk patients. Cranial irradiation was not used prophylactically.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Huguet F, Chevret S, Leguay T, et al. Intensified therapy of acute lymphoblastic leukemia in adults: report of the randomized GRAALL-2005 clinical trial. J Clin Oncol. 2018;36(24):2514–23.

    Article  CAS  PubMed  Google Scholar 

  74. Giona F, Testi AM, Rondelli R, et al. ALL R-87 protocol in the treatment of children with acute lymphoblastic leukaemia in early bone marrow relapse. Br J Haematol. 1997;99(3):671–7.

    Article  CAS  PubMed  Google Scholar 

  75. Thomas DA, Kantarjian H, Smith TL, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer. 1999;86(7):1216–30.

    Article  CAS  PubMed  Google Scholar 

  76. Specchia G, Pastore D, Carluccio P, et al. FLAG-IDA in the treatment of refractory/relapsed adult acute lymphoblastic leukemia. Ann Hematol. 2005;84(12):792–5.

    Article  CAS  PubMed  Google Scholar 

  77. DeAngelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109(12):5136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gökbuget N, Basara N, Baurmann H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118(13):3504–11.

    Article  PubMed  CAS  Google Scholar 

  79. Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol. 2010;150(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  80. Luskin MR, Ganetsky A, Landsburg DJ, et al. Nelarabine, cyclosphosphamide and etoposide for adults with relapsed T-cell acute lymphoblastic leukaemia and lymphoma. Br J Hemat. 2016;174(2):332–4.

    Article  Google Scholar 

  81. Lonetti A, Cappellini A, Bertaina A, et al. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol. 2016;9(1):114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. •• Dunsmore KP, Winter S, Devidas M, et al. COG AALL0434: A randomized trial testing nelarabine in newly diagnosed t-cell malignancy. J Clin Oncol. 2018;36(15_suppl):10500 Prospective evaluation in intermediate and high-risk T-ALL patients ages 1–31 evaluating the addition of nelarabine to frontline therapy versus not. 4-year disease-free survival was 88.9% for patients randomized to nelarabine versus 83.3% in those who did not receive nelarabine.

    Article  Google Scholar 

  83. Abaza Y, Kantarjian HM, Faderl S, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol. 2018;93(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  84. Standard chemotherapy with or without nelarabine or rituximab in treating patients with newly diagnosed acute lymphoblastic leukemia-full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01085617. Accessed November 11, 2019.

  85. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494–507.

    Article  CAS  PubMed  Google Scholar 

  86. Papayannidis C, DeAngelo DJ, Stock W, et al. A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Habets RA, de Bock CE, Serneels L, et al. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 2019;11(494). https://doi.org/10.1126/scitranslmed.aau6246.

  88. Koyama D, Kikuchi J, Hiraoka N, et al. Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28(6):1216–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Horton TM, Whitlock JA, Lu X, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children’s Oncology Group. Br J Haematol. 2019;186(2):274–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. La Starza R, Cambò B, Pierini A, et al. Venetoclax and Bortezomib in relapsed/refractory early T-cell precursor acute lymphoblastic leukemia. JCO Precis Oncol. 2019;3:1–6.

    Google Scholar 

  91. Maude SL, Dolai S, Delgado-Martin C, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125(11):1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delgado-Martin C, Meyer LK, Huang BJ, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31(12):2568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peirs S, Matthijssens F, Goossens S, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014;124(25):3738–47.

    Article  CAS  PubMed  Google Scholar 

  94. Richard-Carpentier G, Jabbour E, Short NJ, et al. Clinical experience with Venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2019. https://doi.org/10.1016/j.clml.2019.09.608.

  95. Lacayo NJ, Pullarkat VA, Stock W, et al. Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 2019;134(S1):285.

    Article  Google Scholar 

  96. Bride KL, Vincent TL, Im S-Y, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vogiatzi F, Winterberg D, Lenk L, et al. Daratumumab eradicates minimal residual disease in a preclinical model of pediatric T-cell acute lymphoblastic leukemia. Blood. 2019;134(8):713–6.

    Article  CAS  PubMed  Google Scholar 

  98. A Study to evaluate the efficacy and safety of daratumumab in pediatric and young adult participants greater than or equal to (>=)1 and less than or equal to (<=) 30 years of age with relapsed/refractory precursor B-cell or T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma-full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03384654. Accessed 21 Jan 2020.

  99. Cooper ML, Choi J, Staser K, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32(9):1970–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hill LC, Rouce RH, Smith TS, et al. Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies. Blood. 2019;134(S1):199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Stock MD.

Ethics declarations

Conflict of interest

Anand A. Patel declares that he has no conflict of interest.

Joseph Thomas declares that he has no conflict of interest.

Alexandra E. Rojek declares that she has no conflict of interest.

Wendy Stock has received compensation from UpToDate, Research to Practice, Agios, Astellas, Daiichi, Kite, and Pfizer for service as a consultant.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.A., Thomas, J., Rojek, A.E. et al. Biology and Treatment Paradigms in T Cell Acute Lymphoblastic Leukemia in Older Adolescents and Adults. Curr. Treat. Options in Oncol. 21, 57 (2020). https://doi.org/10.1007/s11864-020-00757-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00757-5

Keywords

Navigation