Skip to main content

Advertisement

Log in

The Role of PD-1 Checkpoint Inhibition in Gynecologic Malignancies

  • Gynecologic Cancers (LA Cantrell, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Activity of PD-1 and PD-L1 inhibitors has been demonstrated in ovarian, endometrial, and cervical cancer, with a tolerable side effect profile and the highest response rate seen in mismatch repair–deficient endometrial cancers. Other biomarkers are under active investigation. Tumor testing for mismatch repair deficiency or high microsatellite instability for treatment with pembrolizumab should be considered an option for all women with progressive gynecologic malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as •• Of major importance

  1. FDA News Release. FDA approves first cancer treatment for any solid tumor with a specific genetic feature. 2017. Available at: www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm560167.htm. Accessed Sept 27th 2017.

  2. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):61–73.

    Article  Google Scholar 

  3. Ventriglia J, Paciolla I, Pisano C, Cecere SC, di Napoli M, Tambaro R, et al. Immunotherapy in ovarian, endometrial and cervical cancer: state of the art and future perspectives. Cancer Treat Rev. 2017;59:109–16.

    Article  CAS  Google Scholar 

  4. Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbial Immunol. 2011;350:17–37.

    CAS  Google Scholar 

  5. Zou W, Chen L. B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.

    Article  CAS  Google Scholar 

  6. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    Article  CAS  Google Scholar 

  7. Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–9.

    Article  CAS  Google Scholar 

  8. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  Google Scholar 

  9. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Eng J Med. 2012;36618:2455–65.

    Article  Google Scholar 

  10. Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, et al. Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst. 2013;105(9):595–605.

    Article  CAS  Google Scholar 

  11. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(60):2507–16.

    Article  CAS  Google Scholar 

  12. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  Google Scholar 

  13. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.

    Article  CAS  Google Scholar 

  14. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5065–74.

    Article  Google Scholar 

  15. Gottleib CE, Mills AM, Cross JV, Ring KL. Tumor-associated macrophage expression of PD-L1 in implants of high-grade serous carcinoma: a comparison of matched primary and metastatic tumors. Gynecol Oncol. 2017;144(3):607–12.

    Article  Google Scholar 

  16. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015;33(34):4015–22.

    Article  CAS  Google Scholar 

  17. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  Google Scholar 

  18. •• Le DT, Uram JN, Wang BR, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20 First trial to establish MSI-H status as predictive biomarker for response to checkpoint blockade.

    Article  CAS  Google Scholar 

  19. •• Puzanov I, Diab A, Abdallah K, Bingham CO, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Management Working Group. J ImmunoTher Cancer. 2017;5:95 Guidelines for managing toxicities associated with checkpoint inhibition.

    Article  CAS  Google Scholar 

  20. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Postow MA, Sidlow R, Hellman MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68 Outlines immune-related adverse events and management of these events in clinical practice.

    Article  Google Scholar 

  22. Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.

    Article  CAS  Google Scholar 

  23. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  Google Scholar 

  24. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  Google Scholar 

  25. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  Google Scholar 

  26. Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book. 2015;35:76–83.

    Article  Google Scholar 

  27. Disis ML, Patel MR, Pant S, et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with recurrent/refractory ovarian cancer from the JAVELIN Solid Tumor phase 1b trials: safety and clinical activity. J Clin Oncol. 2016; 34. Available at: http://meetinglibrary.asco.org/record/126089/abstract. Accessed Sept 27th 2017.

  28. Varga A, Piha-Paul S, Ott PA, et al. Pembrolizumab in patients with PD-L1–positive advanced ovarian cancer: updated analysis of KEYNOTE-028 [ASCO abstract 5513]. J Clin Oncol. 2017;35(15 suppl).

  29. Rauh-Hain JA, Brewster WR, Behbakht K. Society of Gynecologic Oncology 2018 Annual Meeting on Women’s Cancer: meeting report. Gynecol Oncol 2018; https://doi.org/10.1016/j.ygyno.2018.04.569. Accessed May 22 2018.

  30. Ott PA, Bang Y-J, Berton-Riguad D, et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand-1-positive endometrial cancer: results from the KEYNOTE-028 study. J Clin Oncol. 2017;35(22):2535–41.

    Article  CAS  Google Scholar 

  31. Frenel JS, Le Tourneau C, O'Neil B, Ott PA, Piha-Paul SA, Gomez-Roca C, et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the Phase Ib KEYNOTE-028 Trial. J Clin Oncol. 2017 Dec 20;35(36):4035–41.

    Article  CAS  Google Scholar 

  32. Hollebecque A, Meyer T, Moore KN, et al. An open-label multicohort, phase I/II study of nivolumab in patients with virus-associated tumors (CheckMate 358): efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. J Clin Oncol. 2017;34(suppl; abstr 5504).

  33. Chung HC, Schellens JHM, Delord J-P, et al. Pembrolizumab treatment of advanced cervical cancer: updated results from the phase 2 KEYNOTE-158 study. J Clin Oncol. 2018;36(suppl; abstr 5522).

  34. Rustin GJ, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen T, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer. 2011;21(2):419–23.

    Article  Google Scholar 

  35. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  Google Scholar 

  36. Cancer Genome Atlas Research N, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Article  Google Scholar 

  37. Cohn DE, Frankel WL, Resnick KE, Zanagnolo VL, Copeland LJ, Hampel H, et al. Improved survival with an intact DNA mismatch repair system in endometrial cancer. Obstet Gynecol. 2006;108(5):1208–15.

    Article  CAS  Google Scholar 

  38. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008;26(35):5783–8.

    Article  Google Scholar 

  39. Chang L, Chang M, Chang HM, et al. Microsatellite instability: a predictive biomarkers for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26(2);e15-21.

  40. Sloan EA, Ring KL, Willis BC, Modesitt SC, Mills AM. PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including Lynch syndrome-associated and MLH1 promoter hypermethylated tumors. Am J Surg Pathol. 2017;41:326–33.

    Article  Google Scholar 

  41. Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 2016;126(6):2334–40.

    Article  Google Scholar 

  42. Strickland KC, Howitt BE, Rodig SJ, et al. Immunogenicity of clear cell ovarian cancer: association with ARID1A loss, microsatellite instability and endometriosis. J Clin Oncol. 2016; 34. Abstract available from: http://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.5514. Accessed Sept 27th 2017.

  43. Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol Oncol. 2014;132(20):506–12.

    Article  CAS  Google Scholar 

  44. Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1(9):1319–23.

    Article  Google Scholar 

  45. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–98.

    Article  Google Scholar 

  46. Landskron J, Helland Ø, Torgersen KM, Aandahl EM, Gjertsen BT, Bjørge L, et al. Activated regulatory and memory T-cells accumulate in malignant ascites from ovarian carcinoma patients. Cancer Immunol Immunother. 2015;64:337–47.

    Article  CAS  Google Scholar 

  47. Webb JR, Milne K, Kroeger DR, Nelson BH. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high grade serous ovarian cancer. Gynecol Oncol. 2016;141(2):293–302.

    Article  CAS  Google Scholar 

  48. Murphy MA, Wentzensen N. Frequency of mismatch repair deficiency in ovarian cancer: a systematic review. Int J Cancer. 2011;129:1914–22.

    Article  CAS  Google Scholar 

  49. Walboomers JM, Jacobs MV, Manos M, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.

    Article  CAS  Google Scholar 

  50. Castle PE, Wacholder S, Lorinez AT, et al. A prospective study of high-grade cervical neoplasia risk among human papillomavirus-infected women. J Natl Cancer Inst. 2002;94(18):1406–14.

    Article  Google Scholar 

  51. Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92(18):1500–10.

    Article  CAS  Google Scholar 

  52. Future II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–27.

    Article  Google Scholar 

  53. Howitt BE, Sun HH, Roemer MGM, Kelley A, Chapuy B, Aviki E, et al. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol. 2016;2(4):518–22.

    Article  Google Scholar 

  54. Hinrichs CS, Stevanovic S, Draper L, et al. HPV-targeted tumor-infiltrating lymphocytes for cervical cancer. Presented at: 2014 ASCO Annual Meeting Press Briefing; June 2, 2014; Chicago, IL. Abstract LBA3008.

  55. Morrow MP, Yan J, Sardesai NY. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev vaccines. 2013;12(3):271–83.

    Article  CAS  Google Scholar 

  56. Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.

    Article  CAS  Google Scholar 

  57. Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. Int J Mol Sci. 2016;17(12):E2113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari L. Ring MD, MS.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gynecologic Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, C., Ring, K.L. The Role of PD-1 Checkpoint Inhibition in Gynecologic Malignancies. Curr. Treat. Options in Oncol. 19, 70 (2018). https://doi.org/10.1007/s11864-018-0593-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-018-0593-2

Keywords

Navigation