Skip to main content
Log in

How to make ‘more’ better? Principles for effective use of multiple representations to enhance students’ learning about fractions

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

To make complex mathematics concepts accessible to students, teachers often rely on visual representations. Because no single representation can depict all aspects of a mathematics concept, instruction typically uses multiple representations. Much research shows that multiple representations can have immense benefits for students’ learning. However, some re-search also cautions that multiple representations may fail to enhance students’ learning if they are not used in the “right” way. For example, unless students can (1) properly interpret each individual representation and (2) make connections among multiple representations and the information they intend to convey, the use of multiple representations may actually confuse students rather than aid their learning. In this article, we review research-based principles for how to use multiple representations effectively so that they enhance student learning. Using fractions as an illustrative domain, we discuss how the choice of visual representation may affect student learning based on the conceptual aspects of the to-be-learned content emphasized by the representation. Next, we describe ways to help students interpret individual representations and to make connections among them. We illustrate these arguments with our own empirical research on fractions learning. We conclude by laying out open questions that future research should address.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acevedo Nistal, A., Van Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: a critical review. The International Journal on Mathematics Education, 41(5), 627–636.

    Google Scholar 

  • Ainsworth, S. (2006). Deft: A Conceptual Framework for Considering Learning with Multiple Representations. Learning and Instruction, 16(3), 183–198. doi:10.1016/j.learninstruc.2006.03.001.

    Article  Google Scholar 

  • Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the Effects of Different Multiple Representational Systems in Learning Primary Mathematics. Journal of the Learning Sciences, 11(1), 25–61. doi:10.1207/S15327809JLS1101_2.

    Article  Google Scholar 

  • Ainsworth, S., & Loizou, A. (2003). The effects of self-explaining when Learning with text or diagrams. Cognitive Science: A Multidisciplinary Journal, 27(4), 669–681.

    Article  Google Scholar 

  • Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27–49. doi:10.1002/tea.20265.

    Article  Google Scholar 

  • Behr, M. J., Post, T. R., Harel, G., & Lesh, R. (1993). Rational Numbers: Toward a Semantic Analysis - Emphasis on the Operator Construct. In T. P. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational Numbers: An Integration of Research. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Berthold, K., Eysink, T. H. S., & Renkl, A. (2008). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 27(4), 345–363. doi:10.1007/s11251-008-9051-z.

    Google Scholar 

  • Berthold, K., & Renkl, A. (2009). Instructional Aids to support a conceptual understanding of multiple representations. Journal of Educational Research, 101(1), 70–87. doi:10.1037/a0013247.

    Google Scholar 

  • Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple representations. Computers in Human Behavior, 22(1), 27–42. doi:10.1016/j.chb.2005.01.005.

    Article  Google Scholar 

  • Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3= 2/6= 3/9= 4/12? Journal of Experimental Child Psychology, 111(3), 516–533.

    Article  Google Scholar 

  • Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental psychology, 44(5), 1478–1490.

    Article  Google Scholar 

  • Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293–316. doi:10.1007/s10649-006-9036-2.

    Article  Google Scholar 

  • Chi, M. T. H., Feltovitch, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5, 121–152. doi:10.1207/s15516709cog0502_2.

    Article  Google Scholar 

  • Cramer, K., & Wyberg, T. (2009). Efficacy of different concrete models for teaching the part-whole construct for fractions. Mathematical Thinking and Learning, 11(4), 226–257. doi:10.1080/10986060903246479.

    Article  Google Scholar 

  • Cramer, K., Wyberg, T., & Leavitt, S. (2008). The role of representations in fraction addition and subtraction. Mathematics teaching in the middle school, 13(8), 490.

    Google Scholar 

  • de Croock, M. B. M., Van Merrienboër, J. J. G., & Paas, F. G. W. C. (1998). high versus low contextual interference in simulation-based training of troubleshooting skills: Effects on transfer performance and invested mental effort. Computers in Human Behavior, 14(2), 249–267.

    Article  Google Scholar 

  • DeLoache, J. S. (2000). Dual representation and young children’s use of scale models. Child Development, 71(2), 329–338. doi:10.1111/1467-8624.00148.

    Article  Google Scholar 

  • diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.

    Article  Google Scholar 

  • diSessa, A. A., & Sherin, B. L. (2000). Meta-representation: An introduction. The Journal of Mathematical Behavior, 19(4), 385–398. doi:10.1016/S0732-3123(01)00051-7.

    Article  Google Scholar 

  • Fabbri, S., Caviola, S., Tang, J., Zorzi, M., & Butterworth, B. (2012). The role of numerosity in processing nonsymbolic proportions. The Quarterly Journal of Experimental Psychology, 65(12), 2435–2446.

    Article  Google Scholar 

  • Gentner, D., & Markman, A. B. (1997). Structure Mapping in analogy and similarity. American Psychologist, 52(1), 45–56. doi:10.1037/0003-066X.52.1.45.

    Article  Google Scholar 

  • Gibson, E. J. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295–302. doi:10.1207/S15326969ECO1204_04.

    Article  Google Scholar 

  • Harden, R. M., & Stamper, N. (1999). What is a spiral curriculum? Medical Teacher, 21(2), 141–143.

    Article  Google Scholar 

  • Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13(3), 244–249.

    Article  Google Scholar 

  • Jacob, S. N., & Nieder, A. (2009). Notation-independent representation of fractions in the human parietal cortex. Journal of Neuroscience, 29(14), 4652–4657.

    Article  Google Scholar 

  • Jacob, S. N., Vallentin, D., & Nieder, A. (2012). Relating magnitudes: The brain’s code for proportions. Trends in Cognitive Sciences, 16(3), 157–166.

    Article  Google Scholar 

  • Jeong, Y., Levine, S. C., & Huttenlocher, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantities. Journal of Cognition and Development, 8(2), 237–256.

    Article  Google Scholar 

  • Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 558, pp. 117–165). New York: Elsevier Academic Press.

    Google Scholar 

  • Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational numbers: an integration of research. Hillsdale: Erlbaum.

    Google Scholar 

  • Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive science, 36(5), 757–798. doi:10.1111/j.1551-6709.2012.01245.x.

    Article  Google Scholar 

  • Lewis, M. R., Matthews, P. G., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In D. B. Berch, D. C. Geary & K. M. Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141–160): Elsevier.

  • Mack, N. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422–441.

    Google Scholar 

  • Massey, C. M., Kellman, P. J., Roth, Z., & Burke, T. (2011). Perceptual learning and adaptive learning technology—developing new approaches to mathematics learning in the classroom. In N. L. Stein & S. W. Raudenbush (Eds.), Developmental cognitive science goes to school (pp. 235–249). New York: Routledge.

    Google Scholar 

  • Matthews, P. G., & Chesney, D. L. (2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 28–56. doi:10.1016/j.cogpsych.2015.01.006.

    Article  Google Scholar 

  • Matthews, P. G., & Lewis, M. R. (2017). Fractions we can’t ignore: The ratio congruity effect. Cognitive Science. doi:10.1111/cogs.12419.

    Google Scholar 

  • McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740–745.

    Article  Google Scholar 

  • NCTM. (2000). Principles and Standards for School Mathematics. Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • NCTM. (2006). Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics: A Quest for Coherence. Reston, VA.

  • Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52.

    Article  Google Scholar 

  • NMAP (2008). Foundations for success: Report of the National Mathematics Advisory Board Panel: U.S. Government Printing Office.

  • NRC. (2006). Learning to think spatially. Washington, DC: National Academies Press.

    Google Scholar 

  • Ohlsson, S. (1988). Mathematical meaning and applicational meaning in the semantics of fractions and related concepts. Number concepts and operations in the middle grades, 2, 53–92.

    Google Scholar 

  • Post, T. R., Behr, M. J., & Lesh, R. (1982). Interpretations of rational number concepts. In L. Silvey & J. R. Smart (Eds.), Mathematics for the middle grades (5-9). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Rau, M. A. (2016). Conditions for the effectiveness of multiple visual representations in enhancing stem learning. Educational Psychology Review, 1–45. doi:10.1007/s10648-016-9365-3.

  • Rau, M. A., Aleven, V., & Rummel, N. (2013). Interleaved practice in multi-dimensional learning tasks: Which dimension should we interleave? Learning and Instruction, 23, 98–114. doi:10.1016/j.learninstruc.2012.07.003.

    Article  Google Scholar 

  • Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 30–46. doi:10.1037/a0037211.

    Article  Google Scholar 

  • Rau, M. A., Aleven, V., & Rummel, N. (2016). Supporting students in making sense of connections and in becoming perceptually fluent in making connections among multiple graphical representations. Journal of Educational Psychology. doi:10.1037/edu0000145.

    Google Scholar 

  • Rau, M. A., Aleven, V., Rummel, N., & Pardos, Z. (2014). How should intelligent tutoring systems sequence multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial Intelligence in Education, 24(2), 125–161. doi:10.1007/s40593-013-0011-7.

    Article  Google Scholar 

  • Renkl, A. (2005). The Worked-out Example Principle in Multimedia Learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 229–246). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Schnotz, W. (2005). An Integrated Model of Text and Picture Comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237. doi:10.1016/S0959-4752(02)00022-1.

    Article  Google Scholar 

  • Shanks, D. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage.

    Google Scholar 

  • Siegler, R. S., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., … Wray, J. (2010). Developing effective fractions instruction: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.

    Google Scholar 

  • Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296.

    Article  Google Scholar 

  • Singer, F. M. (2007). Beyond conceptual change: using representations to integrate domain—specific struct ural models in learning mathematics. Mind, Brain, and Education, 1(2), 84–97.

    Article  Google Scholar 

  • Singer, F. M. (2009). The dynamic infrastructure of mind—a hypothesis and some of its applications. New Ideas in Psychology, 27, 48–74.

    Article  Google Scholar 

  • Stern, E., Aprea, C., & Ebner, H. G. (2003). Improving cross-content transfer in text processing by means of active graphical representation. Learning and Instruction, 13(2), 191–203. doi:10.1016/S0959-4752(02)00020-8.

    Article  Google Scholar 

  • Sweller, J. (1990). Cognitive load as a factor in the structuring of technical material. Journal of Experimental Psychology; General, 119(2), 176–192. doi:10.1037//0096-3445.119.2.176.

    Article  Google Scholar 

  • Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168. doi:10.1039/C3RP00012E.

    Article  Google Scholar 

  • Tversky, B. (2011). Visualizing thought. Topics in Cognitive Science, 3(3), 499–535. doi:10.1111/j.1756-8765.2010.01113.x.

    Article  Google Scholar 

  • Tversky, B., Zacks, J., Lee, P., & Heiser, J. (2000). Lines, Blobs, Crosses and Arrows: Diagrammatic Communication with Schematic Figures. In M. Anderson, P. Cheng & V. Haarslev (Eds.), International conference on theory and application of diagrams (pp. 221–230). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: a developmental perspective. In J. Gilbert (Ed.), Visualization: Theory and practice in science education (pp. 53–72). Netherlands: Springer.

    Chapter  Google Scholar 

  • Vallentin, D., & Nieder, A. (2008). behavioral and prefrontal representation of spatial proportions in the monkey. Current Biology, 18(8), 1420–1425.

    Article  Google Scholar 

  • van der Meij, J., & de Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199–212. doi:10.1016/j.learninstruc.2006.03.007.

    Article  Google Scholar 

  • van der Meij, J., & de Jong, T. (2011). The Effects of directive self-explanation prompts to support active processing of multiple representations in a simulation-based learning environment. Journal of Computer Assisted Learning, 27(5), 411–423. doi:10.1111/j.1365-2729.2011.00411.x.

    Article  Google Scholar 

  • Yang, Y., Hu, Q., Wu, D., & Yang, S. (2015). Children’s and adults’ automatic processing of proportion in a Stroop-like task. International Journal of Behavioral Development, 39(2), 97–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina A. Rau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rau, M.A., Matthews, P.G. How to make ‘more’ better? Principles for effective use of multiple representations to enhance students’ learning about fractions. ZDM Mathematics Education 49, 531–544 (2017). https://doi.org/10.1007/s11858-017-0846-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0846-8

Keywords

Navigation