Skip to main content
Log in

Improved bounds on the Hadwiger–Debrunner numbers

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let HD d (p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (pqd + 1). In a celebrated proof of the Hadwiger–Debrunner conjecture, Alon and Kleitman proved that HD d (p, q) exists for all pq ≥ d + 1. Specifically, they prove that \(H{D_d}(p,d + 1)is\tilde O({p^{{d^2} + d}})\) .

We present several improved bounds: (i) For any \(q \geqslant d + 1,H{D_d}(p,d) = \tilde O({p^{d(\frac{{q - 1}}{{q - d}})}})\) . (ii) For q ≥ log p, \(H{D_d}(p,q) = \tilde O(p + {(p/q)^d})\) . (iii) For every ϵ > 0 there exists a p0 = p0(ϵ) such that for every pp0 and for every \(q \geqslant {p^{\frac{{d - 1}}{d} + \in }}\) we have pq + 1 ≤ HD d (p, q) ≤ p − q + 2. The latter is the first near tight estimate of HD d (p, q) for an extended range of values of (p, q) since the 1957 Hadwiger–Debrunner theorem.

We also prove a (p, 2)-theorem for families in R2 with union complexity below a specific quadratic bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, I. Bárány, Z. Füredi and D. J. Kleitman, Point selections and weak ϵ-nets for convex hulls, Combinatorics, Probability & Computing 1 (1992), 189–200.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon and G. Kalai, A simple proof of the upper bound theorem, European Journal of Combinatorics 6 (1985), 211–214.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger–Debrunner (p,q)-problem, Advances in Mathematics 96 (1992), 103–112.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Alon and D. J. Kleitman, A purely combinatorial proof of the Hadwiger–Debrunner (p, q) conjecture, Electronic Journal of Combinatorics 4 (1997), research paper 1.

  5. N. Alon, G. Kalai, R. Meshulam and J. Matoušek, Transversal numbers for hypergraphs arising in geometry, Advances in Applied Mathematics 29 (2002), 79–101.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. K. Agarwal, J. Pach and M. Sharir, State of the union (of geometric objects), in Surveys on Discrete and Computational Geometry, Contemporary Mathematics, Vol. 453, American Mathematical Society, 2008, pp. 9–48.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Ambühl and U. Wagner, The clique problem in intersection graphs of ellipses and triangles, Theory of Computing Systems 38 (2005), 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Bárány, F. Fodor, L. Montejano, D. Oliveros and A. Pór, Colourful and fractional (p, q)-theorems, Discrete & Computational Geometry 51 (2014), 628–642.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bukh, J. Matoušek and G. Nivasch, Lower bounds for weak epsilon-nets and stair-convexity, Israel Journal of Mathematics 182 (2011), 199–228.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Chazelle, H. Edelsbrunner, M. Grigni, L.J. Guibas, M. Sharir and E. Welzl, Improved bounds on weak epsilon-nets for convex sets, Discrete & Computational Geometry 13 (1995), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. M. Chan and S. Har-Peled, Approximation algorithms for maximum independent set of pseudo-disks, Discrete & Computational Geometry 48 (2012), 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Danzer, Zur lösung des gallaischen problems über kreisscheib in der euklidischen ebene, Studia Scientiarum Mathematicarum Hungarica 21 (1986), 111–134.

    MathSciNet  MATH  Google Scholar 

  13. D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combinatorica 16 (1983), 5–10.

    MathSciNet  MATH  Google Scholar 

  14. J. Eckhoff, An upper-bound theorem for families of convex sets, Geometriae Dedicata 19 (1985), 217–227.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Eckhoff, A survey of the Hadwiger–Debrunner (p, q)-problem, in Discrete and Computational Geometry, Algorithms and Combinatorics, Vol. 25, Springer, Berlin, 2003, pp. 347–377.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Efrat and M. Katz, On the union of κ-curved objects, Computational Geometry: Theory and Applications 14 (1999), 241–254.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Govindarajan and G. Nivasch, A variant of the Hadwiger–Debrunner (p, q)- problem in the plane, Discrete & Computational Geometry 54 (2015), 637–646.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Hadwiger and H. Debrunner, Über eine variante zum Hellyschen satz, Archiv der Mathematik 8 (1957), 309–313.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Kalai, Intersection patterns of convex sets, Israel Journal of Mathematics 48 (1984), 161–174.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Keevash, Hypergraph Turán problems, in Surveys in Combinatorics 2011, London Mathematical Society Lecture Note Series, Vol. 392, Cambridge University Press, Cambridge, 2011, pp. 83–140.

    Article  MATH  Google Scholar 

  21. D. J. Kleitman, A. Gyárfás and G. Tóth, Convex sets in the plane with three of every four meeting, Combinatorica 21 (2001), 221–232.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Katchalski and A. Liu, A problem of geometry in Rd, Proceedings of the American Mathematical Society 75 (1979), 284–288.

    MathSciNet  MATH  Google Scholar 

  23. K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete & Computational Geometry 1 (1986), 59–71.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Larman, J. Matoušek, J. Pach and J. Töröcsik, A Ramsey-type result for planar convex sets, Bulletin of the London Mathematical Society 26 (1994), 132–136-.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Matoušek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, Vol. 212, Springer-Verlag, New York, 2002.

  26. J. Matoušek, Bounded VC-dimension implies a fractional Helly theorem, Discrete & Computational Geometry 31 (2004), 251–255.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Matoušek and U. Wagner, New constructions of weak epsilon-nets, Discrete & Computational Geometry 32 (2004), 195–206.

    MathSciNet  MATH  Google Scholar 

  28. R. Pinchasi, A note on smaller fractional Helly numbers, Discrete & Computational Geometry 54 (2015), 663–668.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Pyrga and S. Ray, New existence proofs epsilon-nets, in Computational Geometry (SCG’ 08), ACM, New York, 2008, pp. 199–207.

    Google Scholar 

  30. J. Pach, N. Rubin and G. Tardos, On the Richter–Thomassen conjecture about pairwise intersecting closed curves, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2015, pp. 1506–1516.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaya Keller.

Additional information

A preliminary version of this paper was presented at the SODA’2017 conference.

Research partially supported by Grant 635/16 from the Israel Science Foundation.

Research partially supported by Grant 635/16 from the Israel Science Foundation. A part of this research was carried out during the authors’ visit at EPFL, supported by Swiss National Science Foundation grants 200020-162884 and 200021-165977.

Research partially supported by the “Lend¨ulet” project of the Hungarian Academy of Sciences and by the National Research, Development and Innovation Office, NKFIH, projects K-116769 and SNN-117879. A part of this research was carried out during the authors’ visit at EPFL, supported by Swiss National Science Foundation grants 200020-162884 and 200021-165977.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, C., Smorodinsky, S. & Tardos, G. Improved bounds on the Hadwiger–Debrunner numbers. Isr. J. Math. 225, 925–945 (2018). https://doi.org/10.1007/s11856-018-1685-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1685-1

Navigation