Skip to main content
Log in

Quantitative Helly-Type Theorem for the Diameter of Convex Sets

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We provide a new quantitative version of Helly’s theorem: there exists an absolute constant \(\alpha >1\) with the following property. If \(\{P_i: i\in I\}\) is a finite family of convex bodies in \({\mathbb {R}}^n\) with \({\mathrm{int}} (\bigcap _{i\in I}P_i )\ne \emptyset \), then there exist \(z\in {\mathbb {R}}^n\), \(s\leqslant \alpha n\) and \(i_1,\ldots i_s\in I\) such that

$$\begin{aligned} z+P_{i_1}\cap \cdots \cap P_{i_s}\subseteq cn^{3/2}\Big (z+\bigcap _{i\in I}P_i\Big ), \end{aligned}$$

where \(c>0\) is an absolute constant. This directly gives a version of the “quantitative” diameter theorem of Bárány, Katchalski and Pach, with a polynomial dependence on the dimension. In the symmetric case the bound \(O(n^{3/2})\) can be improved to \(O(\sqrt{n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic geometric analysis, Part I. Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence, RI (2015)

    Book  MATH  Google Scholar 

  2. Ball, K.M., Pajor, A.: Convex bodies with few faces. Proc. Am. Math. Soc. 110(1), 225–231 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bárány, I., Katchalski, M., Pach, J.: Quantitative Helly-type theorems. Proc. Am. Math. Soc. 86, 109–114 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bárány, I., Katchalski, M., Pach, J.: Helly’s theorem with volumes. Am. Math. Mon. 91, 362–365 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barvinok, A.: Thrifty approximations of convex bodies by polytopes. Int. Math. Res. Not. 2014(16), 4341–4356 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Batson, J., Spielman, D., Srivastava, N.: Twice-Ramanujan sparsifiers. In: STOC’ 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 255–262. ACM, New York (2009)

  7. Brazitikos, S.: Brascamp-Lieb inequality and quantitative versions of Helly’s theorem. Preprint http://arxiv.org/abs/1509.05783

  8. Brazitikos, S., Chasapis, G., Hioni, L.: Random approximation and the vertex index of convex bodies. Preprint http://arxiv.org/abs/1512.02449

  9. Carl, B., Pajor, A.: Gelfand numbers of operators with values in a Hilbert space. Invent. Math. 94, 479–504 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedland, O., Youssef, P.: Approximating matrices and convex bodies through Kadison–Singer. Preprint http://arxiv.org/abs/1605.03861

  11. Gluskin, E.D.: Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Math. Sb. (N.S.) 136, 85–96 (1988)

    MATH  Google Scholar 

  12. Gluskin, E.D., Litvak, A.E.: A remark on vertex index of the convex bodies. In: Geometric and Functional Analysis. Lecture Notes in Mathematics, vol. 2050, pp. 255–265. pringer, Berlin (2012)

  13. John, F.: Extremum problems with inequalities as subsidiary conditions. Courant Anniversary Volume, pp. 187–204. Interscience, New York (1948)

  14. Naszódi, M.: Proof of a conjecture of Bárány, Katchalski and Pach. Discrete Comput. Geom. 55, 243–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  16. Srivastava, N.: On contact points of convex bodies. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2050, pp. 393–412. Springer, Berlin (2012)

Download references

Acknowledgements

We acknowledge support from Onassis Foundation. We would like to thank Apostolos Giannopoulos for useful discussions and the referee for comments and valuable suggestions on the presentation of the results of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silouanos Brazitikos.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazitikos, S. Quantitative Helly-Type Theorem for the Diameter of Convex Sets. Discrete Comput Geom 57, 494–505 (2017). https://doi.org/10.1007/s00454-016-9840-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9840-0

Keywords

Mathematics Subject Classification

Navigation