Skip to main content
Log in

On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. Part II: The lower bound

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We construct the lower bound, in the spirit of Γ-convergence for some general classes of singular perturbation problems, with or without a prescribed differential constraint, of the form

$$E_\varepsilon (v): = \int_\Omega {\frac{1} {\varepsilon }F(\varepsilon ^n \nabla ^n v, \ldots ,\varepsilon \nabla v,v)dx} for v:\Omega \subset \mathbb{R}^N \to \mathbb{R}^k such that A \cdot \nabla v = 0, $$

where the function F is nonnegative and A: ℝk×N → ℝm is a prescribed linear operator (for example, A:≡ 0, A · ▿v:= curl v and A · ▿v = divv). Furthermore, we study the cases where we can easily prove that this lower bound coincides with the upper bound obtained in [18]. In particular, we find the formula for the Γ-limit for a general class of anisotropic problems without a differential constraint (i.e., in the case A:≡ 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, Metric space valued functions of bounded variation, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 17 (1990), 439–478.

    MATH  MathSciNet  Google Scholar 

  2. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calculus of Variations and Partial Differential Equations 9 (1999), 327–355.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  4. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, in Miniconference on Geometry and Partial Differential Equations, 2 (Canberra, 1986), Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 12, Australian National University, Canberra, 1987, pp. 1–16.

    Google Scholar 

  5. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 129 (1999), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Conti and C. de Lellis, Sharp upper bounds for a variational problem with singular perturbation, Mathematische Annalen 338 (2007), 119–146.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Conti and B. Schweizer, A sharp-interface limit for a two-well problem in geometrically linear elasticity, Archive for Rational Mechanics And Analysis 179 (2006), 413–452.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Conti and B. Schweizer, Rigidity and Gamma convergence for solid-solid phase transitions with SO(2)-invariance, Communications on Pure and Applied Mathematics 59 (2006), 830–868.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Conti, I. Fonseca and G. Leoni, A Γ-convergence result for the two-gradient theory of phase transitions, Communications on Pure and Applied Mathematics 55 (2002), 857–936.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions, SIAM Journal on Mathematical Analysis 31 (2000), 1121–1143 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Fonseca and C. Popovici, Coupled singular perturbations for phase transitions, Assymptotic Analisis 44 (2005), 299–325.

    MATH  MathSciNet  Google Scholar 

  12. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin, 1983.

    Book  MATH  Google Scholar 

  13. C. De Lellis and F. Otto, Structure of entropy solutions to the eikonal equation, Journal of the European Mathematical Society 5 (2003), 107–145.

    Article  MATH  Google Scholar 

  14. L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Archive for Rational Mechanics and Analysis 98 (1987), 123–142.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Modica and S. Mortola, Un esempio di Γ-convergenza, Unione Matematica Italiana. Bolletino. B. Serie V 14 (1977), 285–299.

    MATH  MathSciNet  Google Scholar 

  16. A. Poliakovsky, A general technique to prove upper bounds for singular perturbation problems, Journal d’Analyse Mathematique 104 (2008), 247–290.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, Journal of the European Mathematical Society 9 (2007), 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Poliakovsky, On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. Part I: The upper bound, Differential and Integral Equations 26 (2013), 1179–1234.

    MATH  MathSciNet  Google Scholar 

  19. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis 101 (1988), 209–260.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Poliakovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poliakovsky, A. On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. Part II: The lower bound. Isr. J. Math. 210, 359–398 (2015). https://doi.org/10.1007/s11856-015-1256-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1256-7

Keywords

Navigation