Skip to main content
Log in

On the classification of weakly symmetric Finsler spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we give the classification of some special types of weakly symmetric Finsler spaces. We first present a general principle to classify weakly symmetric Finsler spaces and also give a method to figure out the Berwald spaces among the class of weakly symmetric Finsler spaces. Then we give an explicit classification of weakly symmetric Finsler spaces with reductive isometric groups as well as the left invariant weakly symmetric Finsler metrics on nilpotent Lie groups of the Heisenberg type. As an application, we obtain a large number of high-dimensional examples of reversible Finsler spaces which are non-Berwaldian and with vanishing S-curvature, a kind of spaces which are sought after in an open problem of Z. Shen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Akhiezer and E. B. Vinberg, Weakly symmetric spaces and spherical varieties, Transformation Groups 4 (1999), 3–24.

    MathSciNet  MATH  Google Scholar 

  2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  3. J. Berndt and L. Vanhecke, Geometry of weakly symmetric spaces, Journal of the Mathematical Society of Japan 48 (1996), 745–760.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Berndt, O. Kowalski and L. Vanhecke, Geodesics in weakly symmetric spaces, Annals of Global Analysis and Geometry 15 (1997), 153–156.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Berndt, F. Ricci and L. Vanhecke, Weakly symmetric groups of Heseiberg type, Differential Geometry and its Applications 8 (1998), 275–284.

    Article  MathSciNet  Google Scholar 

  6. A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  7. A. Borel, Some remarks about Lie groups transitive on spheres and tori, Bulletin of the American Mathematical Society 55 (1940), 580–587.

    Article  MathSciNet  Google Scholar 

  8. M. Brion, Classification des espaces homogénes sphèriques, Compositio Mathematica 63 (1989), 189–208.

    MathSciNet  Google Scholar 

  9. E. Cartan, Sur la détermination d’un systéme orthogonal complet dans un espace de Riemann symmètrique clos, Rendiconti del Circolo Matematico di Palermo 53 (1929), 217–252.

    Article  Google Scholar 

  10. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific, Singapore, 2004.

    MATH  Google Scholar 

  11. S. Deng, An algebraic approach to weakly symmetric Finsler spaces, Canadian Journal of Mathematics 62 (2010), 52–73.

    Article  MATH  Google Scholar 

  12. S. Deng, Finsler metrics and the degree of symmetry of a closed manifold, Indiana University Mathematics Journal, to appear.

  13. S. Deng and Z. Hou, Invariant Finsler metrics on homogeneous manifolds, Journal of Physics. A. Mathematical and General 37 (2004), 8245–8253.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Deng and Z. Hou, On symmetric Finsler spaces, Israel Journal of Mathematics 166 (2007), 197–219.

    Article  MathSciNet  Google Scholar 

  15. S. Deng and Z. Hou, Weakly symmetric Finsler spaces, Communications in Contemporary Mathematics 12 (2010), 309–323.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. S. Gordon, Homogeneous Riemannian manifolds whose geodesics are orbits, in Topics in Geometry, in Memory of Joseph D’Atric, Progress in Nonlinear Differential Equations 20, Birkhäuser, Basel, 1996, pp. 155–174.

    Google Scholar 

  17. S. Helgason, Differential Geometry, Lie groups and Symmetric Spaces, 2nd edn., Academic Press, New York, 1978.

    MATH  Google Scholar 

  18. Y. Ichijyō, Finsler spaces modeled on a Minkowski space, Journal of Mathematics of Kyoto University 16 (1976), 639–652.

    MathSciNet  MATH  Google Scholar 

  19. A. Kaplan, Fundamental solution for a class of hypoelleptic PDE generated by composition of quadratic forms, Transactions of the American Mathematical Society 258 (1980), 147–153.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York, Vol. 1, 1963; Vol. 2, 1969.

    MATH  Google Scholar 

  21. M. Krämer, Sphärische untergruppen in Kompakten zusammenhängenden Liegruppen, Compositio Mathematica 38 (1979), 129–153.

    MathSciNet  MATH  Google Scholar 

  22. I. V. Mikityuk, On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math Sb. 57 (1987), 527–546.

    Article  Google Scholar 

  23. D. Montgomery and H. Samelson, Transformation groups of spheres, Annals of Mathematics. Second Series 44 (1943), 454–470.

    Article  MathSciNet  Google Scholar 

  24. A. L. Onisĉik, Transitive compact transformation groups, Math. Sb. 60 (1963), 447–485.

    Google Scholar 

  25. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, The Journal of the Indian Mathematical Society. New Series 20 (1956), 47–87.

    MathSciNet  MATH  Google Scholar 

  26. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Advances in Mathematics 128 (1997), 306–328.

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Shen, Some open problems in Finsler geometry, preprint, available on Z. Shen’s home page at www.math.iupui.edu

  28. Z. I. Szabó, Spectral geometry for operator families on Riemannian manifolds, Sympos. Pure Math. 54 (1993), 615–665.

    Google Scholar 

  29. Z. I. Szabó, Positive definite Berwald spaces, Tensor, New Series 38 (1981), 25–39.

    Google Scholar 

  30. E. N. Wilson, Isometry groups on homogeneous nilmanifolds, Geometriae Dedicata 12 (1982), 337–346.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. A. Wolf, Curvature in nilpotent Lie groups, Proceedings of American Mathematical Society 15 (1964), 271–274.

    Article  MATH  Google Scholar 

  32. J. A. Wolf, Harmonic Analysis on Commutative Spaces, American Mathematical Society Surveys and Monographs, Vol. 142, American Mathematical Society, Providence, RI, 2007.

    Google Scholar 

  33. O. Yakimova, Weakly symmetric Riemannian manifolds with a reductive isometry group, Sb. Math 195 (2004), 599–614.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Ziller, Weakly symmetric spaces, in Topics in Geometry, in memory of Joseph D’Atric, Progress in Nonlinear Differential Equastions 20, Birkhäuser, Basel, 1996, pp. 355–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Deng.

Additional information

Supported by NSFC (No.10671096 and 10971104) of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S. On the classification of weakly symmetric Finsler spaces. Isr. J. Math. 181, 29–52 (2011). https://doi.org/10.1007/s11856-011-0002-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0002-z

Keywords

Navigation