Skip to main content
Log in

Graphs, skeleta and reconstruction of polytopes

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A renowned theorem of Blind and Mani, with a constructive proof by Kalai and an efficiency proof by Friedman, shows that the whole face lattice of a simple polytope can be determined from its graph. This is part of a broader story of reconstructing face lattices from partial information, first considered comprehensively in Grünbaum’s 1967 book. This survey paper includes varied results and open questions by many researchers on simplicial polytopes, nearly simple polytopes, cubical polytopes, zonotopes, crosspolytopes, and Eulerian posets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hans Achatz and Peter Kleinschmidt, Reconstructing a simple polytope from its graph, in: Polytopes—Combinatorics and Computation, Gil Kalai and Günter Ziegler (eds.), DMV Seminar, 29, Birkhäuser (Basel, 2000), pp. 155–165

  2. Karim, A.: Adiprasito, Gil Kalai, and Micha A. Perles, Personal communication (September (2017)

    Google Scholar 

  3. Karim, A.: Adiprasito and Raman Sanyal, Relative Stanley-Reisner theory and upper bound theorems for Minkowski sums. Publ. Math. Inst. Hautes Études Sci. 124, 99–163 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ilan Adler, Abstract Polytopes, PhD Thesis, Stanford University (1971)

  5. Babson, Eric, Finschi, Lukas, Fukuda, Komei: Cocircuit graphs and efficient orientation reconstruction in oriented matroids. European J. Combin. 22, 587–600 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babson, Eric K., Billera, Louis J., Chan, Clara S.: Neighborly cubical spheres and a cubical lower bound conjecture. Israel J. Math. 102, 297–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnette, David: A necessary condition for \(d\)-polyhedrality. Pacific J. Math. 23, 435–440 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barvinok, Alexander: Seung Jin Lee, and Isabella Novik, Explicit constructions of centrally symmetric \(k\)-neighborly polytopes and large strictly antipodal sets. Discrete Comput. Geom. 49, 429–443 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Björner, Anders, Edelman, Paul H., Ziegler, Günter M.: Hyperplane arrangements with a lattice of regions. Discrete Comput. Geom. 5, 263–288 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Björner, Anders, Paffenholz, Andreas, Sjöstrand, Jonas, Ziegler, Günter M.: Bier spheres and posets. Discrete Comput. Geom. 34, 71–86 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blind, Roswitha, Mani-Levitska, Peter: Puzzles and polytope isomorphisms. Aequationes Math. 34, 287–297 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dancis, Jerome: Triangulated \(n\)-manifolds are determined by their \([n/2]+1\)-skeletons. Topology Appl. 18, 17–26 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ludwig, W.: Danzer and Egon Schulte, Reguläre Inzidenzkomplexe I. Geom. Dedicata 13, 295–308 (1982)

    MathSciNet  Google Scholar 

  14. David, L.: Donoho and Jared Tanner, Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Amer. Math. Soc. 22, 1–53 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Joseph Doolittle, Eran Nevo, Guillermo Pineda-Villavicencio, Julien Ugon and David Yost, On the reconstruction of polytopes, arXiv:1702.08739v2 [math.CO] (February 2017)

  16. William Espenschied, Graphs of Polytopes, PhD thesis, University of Kansas (2014)

  17. Moritz Firsching, Personal communication (September 2017)

  18. Eric, J.: Friedman, Finding a simple polytope from its graph in polynomial time. Discrete Comput. Geom. 41, 249–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Branko Grünbaum, Convex polytopes, 2nd edition, Graduate Texts in Mathematics 221, Springer-Verlag (New York, 2003)

  20. Haase, Christian, Ziegler, Günter M.: Examples and counterexamples for the Perles conjecture. Discrete Comput. Geom. 28, 29–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudolf Halin, Zu einem Problem von B. Grünbaum, Arch. Math. (Basel), 17 (1966), 566–568

  22. Michael Joswig, Reconstructing a non-simple polytope from its graph, in: Polytopes—Combinatorics and Computation, Gil Kalai and Günter Ziegler (eds.), DMV Seminar, 29, Birkhäuser (Basel, 2000), pp. 167–176

  23. Joswig, Michael, Kaibel, Volker, Körner, Friederike: On the \(k\)-systems of a simple polytope. Israel J. Math. 129, 109–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Joswig, Michael, Rörig, Thilo: Neighborly cubical polytopes and spheres. Israel J. Math. 159, 221–242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Joswig, Michael, Ziegler, Günter M.: Neighborly cubical polytopes. Discrete Comput. Geom. 24, 325–344 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Volker Kaibel, Reconstructing a simple polytope from its graph, in: Combinatorial Optimization—Eureka, You Shrink!, Michael Jünger, Gerhard Reinelt and Giovanni Rinaldi (eds.), Lecture Notes in Comput. Sci., 2570, Springer-Verlag (Berlin, 2003), pp. 105–118

  27. Kalai, Gil: A simple way to tell a simple polytope from its graph. J. Combin. Theory Ser. A 49, 381–383 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gil Kalai, Some aspects of the combinatorial theory of convex polytopes, in: Polytopes: Abstract, Convex and Computational (Scarborough, ON, 1993), Tibor Bisztriczky, Peter McMullen, Rolf Schneider and Asia Ivić Weiss (eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 440, Kluwer Acad. Publ. (Dordrecht, 1994), pp. 205–229

  29. Gil Kalai, Polytope skeletons and paths, in: Handbook of Discrete and Computational Geometry, 2nd edition, Jacob E. Goodman and Joseph O'Rourke (eds.), Discrete Mathematics and its Applications, Chapman & Hall/CRC (Boca Raton, FL, 2004), pp. 455–476

  30. Linial, Nathan, Novik, Isabella: How neighborly can a centrally symmetric polytope be? Discrete Comput. Geom. 36, 273–281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Matschke, Benjamin, Pfeifle, Julian, Pilaud, Vincent: Prodsimplicial-neighborly polytopes. Discrete Comput. Geom. 46, 100–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. McMullen, Peter, Shephard, Geoffrey C.: Diagrams for centrally symmetric polytopes. Mathematika 15, 123–138 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  33. Katta, G.: Murty, The graph of an abstract polytope. Math. Programming 4, 336–346 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Padrol, Arnau: Many neighborly polytopes and oriented matroids. Discrete Comput. Geom. 50, 865–902 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pfeifle, Julian, Pilaud, Vincent, Santos, Francisco: Polytopality and Cartesian products of graphs. Israel J. Math. 192, 121–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Guillermo Pineda-Villavicencio, Julien Ugon, and David Yost, On polytopes close to being simple, arXiv:1704.00854 [math.CO] (April 2017)

  37. Guillermo Pineda-Villavicencio, Julien Ugon, and David Yost, The excess degree of a polytope, arXiv:1703.10702v2 [math.CO] (March 2017)

  38. Rörig, Thilo, Sanyal, Raman: Non-projectability of polytope skeleta. Adv. Math. 229, 79–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sanyal, Raman, Ziegler, Günter M.: Construction and analysis of projected deformed products. Discrete Comput. Geom. 43, 412–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Egon Schulte, Regular incidence complexes, polytopes and \(C\)-groups, in: Symmetry, In honor of Károly Bezdek's and Egon Schulte's 60th birthdays, Marston D. E. Conder, Antoine Deza and Asia Ivić Weiss (eds.), Springer International Publishing (to appear)

  41. Ernst Steinitz and Hans Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie (Reprint), Springer-Verlag (Berlin–New York, 1976). Reprint der 1934 Auflage, Grundlehren der Mathematischen Wissenschaften, No. 41.

  42. Whitney, Hassler: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54, 150–168 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ronald Wotzlaw, Incidence Graphs and Unneighborly Polytopes, PhD thesis, Technische Universität Berlin (2009)

  44. Hailun Zheng, Ear decomposition and balanced 2-neighborly simplicial manifolds, arXiv:1612.03512v2 [math.CO] (December 2016)

  45. Günter M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag (New York, 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bayer.

Additional information

Dedicated to Tibor Bisztriczky, Gábor Fejes Tóth and Endre Makai, on the occasion of their birthdays

This article is based in part on work supported by the National Science Foundation under Grant No. DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, and while supported by a University of Kansas sabbatical, during the Fall 2017 semester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, M.M. Graphs, skeleta and reconstruction of polytopes. Acta Math. Hungar. 155, 61–73 (2018). https://doi.org/10.1007/s10474-018-0804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-0804-0

Key words and phrases

Mathematics Subject Classification

Navigation