Skip to main content

Advertisement

Log in

Spatio-temporal modelling of shoreline migration in Sagar Island, West Bengal, India

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Sagar Island is a very popular pilgrimage destination located in the western part of Indian Sundarbans. This study employs Digital Shoreline Analysis System (DSAS) extension tool in ArcGIS platform to study and analyse the shoreline dynamics of Sagar Island by utilizing satellite images extending 40 years (1975–2015). 44 transects with 100 m spacing were laid and divided into six littoral cells (LCs). End Point Rate (EPR) and Linear Regression (LR) models were utilized to analyze the shoreline change patterns and also for predicting the future shoreline positions. It was observed that almost the entire southern portion of Sagar Island is susceptible to high rate of shoreline erosion. Most of the erosion occurred in Dhablat (LC 4 (a)) in the south eastern part at a rate of 11.695 ± 2.1 m/year. The mean shoreline change rate was also high in LC5 (±23.525 m/year). However, the overall shoreline change rate for the island was 4.94 m/year and uncertainty of total shoreline change rate was ±4.4 m/year. The study shows the usefulness of DSAS as a scientific tool for shoreline change studies and highlights state of erosion in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler-Golden S, Matthew M, Bernstein L, Levine R, Berk A, Richtsmeier S, Acharya P, Anderson G, Felde G, Gardner J, Hoke M, Jeong L, Pukall B, Ratkowski A, Burke H (1999) Atmospheric correction for shortwave spectral imagery based on MODTRAN4. In: SPIE proceedings Imaging Spectrometry. pp. 61–69

  • Bag, R.; Mondal, I.; Bandyopadhyay, J. Assessing the oscillation of channel geometry and meander migration cardinality of Bhagirathi river, West Bengal, India. J. Geogr. Sci. 2019, 29(*):1-22, DOI: https://doi.org/10.1007/s11442-019-0000-0

    Article  Google Scholar 

  • Bagli S, Soille P (2003) Morphological automatic extraction of pan-European coastline from Landsat ETM+ images. Proceeding International Symposium on GIS and Computer Cartography for Coastal Zone Management, Genova

  • Bandyopadhyay, J., Mondal, I and Samanta, N. 2014. Shore Line Shifting of Namkhana Island of Indian Sundarban, South 24 Parganas, West Bengal, India, Using Remote Sensing &GIS Techniques. International Journal of Engineering Sciences & Research Technology (IJESRT) ISSN: 2277–9655 Vol. 3 Issue 5 - May, 2014 | 162–169

  • Boak EH, Turner IL (2005) Shoreline definition and detection: A review. J. Coast. Res. (ISSN: 0749-0208) 21 (4), 688–703. West Palm Beach (Florida)

  • B. W. Mutaqin, 2017. Shoreline Changes Analysis in Kuwaru Coastal Area, Yogyakarta, Indonesia: An Application of the Digital Shoreline Analysis System (DSAS) Int. J. Sus. Dev. Plann. Vol. 12, No. 7 (2017) 1203–1214

  • Chakraborty S (2013) Delineation of morpho-structural changes of some selected islands in the ganga delta region, West Bengal, India – a spatio-temporal change detection analysis using GIS and remote sensing. Int J Sci Nat 4:499–507

    Google Scholar 

  • Chenthamil Selvan S, Kankara RS, Rajan B. 2014. Assessment of shoreline changes along Karnataka coast, India using GIS & remote sensing techniques. India J Geo Mar Sci 43:(1–7)

  • Crowell M, Leatherman SP, Buckley MK. 1991. Historical shoreline change error analysis, Journal of Coastal Research, Vol. 7, No. 3 (Summer, 1991), pp. 839–852

  • Cowell PJ, Thom BG. 1994. Morphodynamics of coastal evolution. In: Carter RWG, WoodroffeCD (Eds.) coastal evolution. Cambridge University press, Cambridge, pp. 33-86

  • Del Río L, Gracia FJ (2012) Error determination in the photogrammetric as sessment of shoreline changes. Nat Hazards. https://doi.org/10.1007/s11069-012-0407-y

  • Esteves LS, William JJ, Nock A, Lymbery G (2009) Quantifying shoreline changes along the Sefton coast (UK) and the implications for research-informed coastal management. J Coast Res S156:602–606

    Google Scholar 

  • Felde GW, Anderson GP, Adler-Golden SM, Matthew MW, Berk A (2003) Analysis of Hyperion data with the FLAASH atmospheric correction algorithm. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX SPIE Aerosense Conference, Orlando 21–25 (April 2003)

  • Gopinath G, Seralathan P (2005) Rapid Erosion of the coast of Sagar Island, West Bengal. India Environ Geol 48: [1058–1067]:1058–1067

    Article  Google Scholar 

  • Islam M. A., M. S. Hossain, Naime, M.A., Hossain, M.S., Rahaman, M.M., Peas, M.S. 2015. Assessment of Socio-Economic Resilience against Coastal Disasters in Sandwip Island of Bangladesh, Bangladesh J. Sci. Res. 28(2): 161–170, 2015 (December)

  • Jana, A. Maiti, S. Biswas, A. 2016. Analysis of short-term shoreline oscillations along Midnapur-Balasore coast, bay of Bengal, India: a study based on geospatial technology, modeling earth systems and environment, June 2016, 2:64

  • Jayappa K. S. Mitra, D.A. K. Mishra. 2006. Coastal geomorphological and land-use and land-cover study of Sagar Island, Bay of Bengal (India) using remotely sensed data, International Journal of Remote Sensing, Vol. 27, No. 17, 10 September 2006, 3671–3682

  • Jonah, F.E., I. Boateng, A. Osman, M.J. Shimba, E.A. Mensah, K. Adu-Boahen, E.O. Chuku, E. Effah. 2016a. Shoreline change analysis using end point rate and net shoreline movement statistics: an application to Elmina, Cape Coast and Moree section of Ghana’s coast, regional studies in marine science, volume 7, September 2016, Pages 19–31

  • Jonah FE, Mensah EA, Edziyie RE, Agbo NW, Adjei-Boateng D (2016b) Coastal Erosion in Ghana: causes, policies, and management. Coast Manag 44(2):116–130. https://doi.org/10.1080/08920753.2016.1135273

    Article  Google Scholar 

  • Addo KA, Jayson-Quashigah PN, Kufogbe KS (2011) Quantitative Analysis of Shoreline Change Using Medium Resolution Satellite Imagery in Keta, Ghana. Marine Science 1(1):1–9. https://doi.org/10.5923/j.ms.20110101.01

    Article  Google Scholar 

  • Kaufman, Y. J. D. TanrC, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouins H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet. 1997. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research, Vol. 102, no. D14, Pages 16,815-16,830, July 27, 1997

  • Khobragade, A.N. Raghuwanshi, M.M. Malik, L. 2016. Soft computing models for crop acreage estimation using multi-sensory satellite images, international journal of advanced research in computer science and software engineering 6(3), March - 2016, pp. 447–455

  • Lavigne, F., Boillot-Airaksinen, K., Mutaqin, B.W., Sudrajat Y., Hiden, Syamsuddin, Komorowski, J.C., Sutarman, Nyanjang, Giet, C., De Belizal, E., Virmoux, C., Wassmer, P., Pratomo, I., Hadmoko, D.S., (2016) Kusnadin, Handayani, L. & Hananto, N., How to Reconstruct the landscape of Lombok Island (Indonesia) during the Kingdom of Pamatan Buried by the AD 1257 PDC Deposits of Samalas Volcano? Cities on Volcanoes 9, Puerto Varas, Chile

  • Lisitzin E. 1974. Sea level changes oceanography series, 8, Amsterdam: Elsevier, 286 pp.

  • Maiti S. and Bhattacharya AK. 2007. Shoreline change study using remote sensing and GIS techniques along Midnapore coast, West Bengal, India] [abstract volume: Curent trends in remote sensing and GIS application, IIT Kharagpur.]

  • Maiti S, Bhattacharya AK (2009) Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar Geol 257:11–23

    Article  Google Scholar 

  • Marfai, M.A., Impact of sea level rise to coastal ecology: a case study on the northern part of Java Island, Indonesia. Quaestiones Geographicae, 33(1), 2014. Bogucki Wydawnictwo Naukowe, Poznań, pp 107–114, 2012

  • Mills JP, Buckley SJ, Mitchell HL, Clarke PJ, Edwards SJ (2005) A geomatics data integration technique for coastal change monitoring. Earth Surf Process Landf 30:651–664. https://doi.org/10.1002/esp.1165

    Article  Google Scholar 

  • Mondal I, Bandyopadhyay J, Dhara S (2016) Detecting shoreline changing trends using principle component analysis in Sagar Island, West Bengal, India, Journal of Spatial Information Research. Springer Nature 25(1):67–73. https://doi.org/10.1007/s41324-016-0076-0

    Article  Google Scholar 

  • Mondal, I. Bandyopadhyay, J. Paul, AK. 2016a. Estimation of Hydrodynamic Pattern Change of Ichamati River using HEC RAS Model, West Bengal, India, Model. Earth Syst. Environ. (2016) 2:125 DOI 10.1007/s40808-016-0138-2ISSN: 2363–6211

  • Mukherjee S, 2001. Sundarbans biosphere reserve (in) workshop on Sundarbans day, 3rd June 2001, organised by Sundarbans biosphere reserve and Zilla Parishad – 24 Parganas (south) in collaboration with Department of Sundarbans affairs, Zoological Survey of India, Botanical Survey of India and Calcutta Wildlife Society

  • Manjunath K.R, Tanumi, K., Kundu, N & Panigrahy, S. 2013. Discrimination of mangrove species and mudflat classes using in-situ hyperspectral data: a case study of Indian Sundarbans

  • Markoski, P. R. Rolim, S. B. A. 2014. Evaluation of ASTER Images for Characterization and Mapping of Volcanic Rocks (Basalts), International Journal of Advanced Remote Sensing and GIS 2014, Volume 3, Issue 1, pp. 486–498, Article ID Tech-222 ISSN 2320–0243

  • Nandi S, Ghosh M, Kundu A, Dutta D, Baks M (2016) Shoreline shifting and its prediction using remote sensingand GIS techniques: a case study of Sagar Island, West Bengal(India). J Coast Conserv 20:61–80. https://doi.org/10.1007/s11852-015-0418-4

    Article  Google Scholar 

  • Nandi S. 2013. Assessment of shoreline changes and its future prediction using geospatial techniques in deltaic Sundarban, West Bengal, M. tech. Thesis (unpublished), BIT, Mesra, Ranchi, India

  • Pajak MJ, Leatherman S (2002) The high water line as shoreline indicator. J Coast Res 18:329–337

    Google Scholar 

  • Pardo-Pascual JE, Almonacid-Caballer J, Ruiz LA, Palomar-Vázquez J (2012) Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens Environ 123:1–11. https://doi.org/10.1016/j.rse.2012.02.024

    Article  Google Scholar 

  • Paskoff R, Clus-Auby C. 2007. L’érosion des plages. Les causes, les remedes. Institute Océanographique Éditeur: Paris, 184pp

  • Paul, AK. 2002. Coastal geomorphology and Environment. A.C.B Publication, Kolkata. P.582

  • Pugh D (1996) Tides, surges and mean sea level. John Wiley & Sons, Chichester, 472pp

    Google Scholar 

  • Pugh D (2004) Changing sea levels. Weather and Climate. Cambridge University Press, Effects of Tides, 280pp

    Google Scholar 

  • Purkait B (2009) Coastal erosion in response to wave dynamics operative in Sagar Island, Sundarbans delta, India. Frontier Earth Science China 3:21–33

    Article  Google Scholar 

  • Lhissou R, Harti AE, Chokmani K (2014) Eurasian. J Soil Sci 3(2014):82–88

    Google Scholar 

  • Roy Chowdhury B., Sen T. 2015. Coastal Erosion and its impact on Sagar Island, (S) 24 Parganas, W.B, international journal of science and research (IJSR) ISSN (online): 2319-7064, paper ID: SUB152282

  • S. Kaliraj, N. Chandrasekar, N. S. Magesh. 2013. Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology, Environ Earth Sci DOI https://doi.org/10.1007/s12665-013-2845-6

  • Salghuna NNS, Bharathvaj A (2015) Shoreline change analysis for northern part of the Coromandel Coast, international conference on water resources, coastal and ocean engineering (Icwrcoe 2015). Aquatic Procedia 4(2015):317–324

    Article  Google Scholar 

  • Sheeja P.S.; Ajay Gokul A.J. 2016. Application of digital shoreline analysis system in coastal Erosion assessment, international journal of engineering science and computing, June 2016, volume 6 issue no. 6, ISSN 2321 3361

  • Smith GL, Zarillo GA (1990) Calculating long-term shoreline recession rates using aerial photographic and beach profiling techniques. J Coast Res 6(1):111–120

    Google Scholar 

  • Su Hua and Wang Yunpeng. 2012. Estimating sea ice thickness using MODIS data: a case study in the Bohai Sea, China, 2012 second international workshop on earth observation and remote sensing applications 978-1-4673-1946-1/12/$31.00 ©2012 IEEE

  • Teillet M, Staenz K, Williams DJ (1997) Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens Environ 61:139–149

    Article  Google Scholar 

  • Temitope D. T. Oyedotun. 2014. Shoreline Geometry: DSAS as a Tool for Historical Trend Analysis, British Society for Geomorphology, Geomorphological Techniques, Chap. 3, Sec. 2.2, ISSN 2047-0371

  • Thébaudeau B, Trenhaile AS, Edwards RJ (2013) Modelling the development of rockyshoreline profiles along the northern coast of Ireland. Geomorphology 203:66–78. https://doi.org/10.1016/j.geomorph.2013.03.027

    Article  Google Scholar 

  • Thieler Robert E., Emily A. Himmelstoss, Jessica L. Zichichi, and Ayhan Ergul. 2009. The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change Open-File Report 2008–1278

  • USGS. 2013. DSASweb: http://marine.usgs.gov/dsasweb

  • Yunus Ali P., Jie Dou. Ram Avtar. A. C. Narayana. 2016. Shoreline and Coastal Morphological Changes Induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar – A Study Using Archived Satellite Images, Tsunamis and Earthquakes in Coastal Environments pp 65–77

Download references

Acknowledgements

The authors are thankful to SERB, Department of Science and Technology, Govt. of India for providing National Post-Doctoral Fellowship to pursue this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Mondal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, I., Thakur, S., Juliev, M. et al. Spatio-temporal modelling of shoreline migration in Sagar Island, West Bengal, India. J Coast Conserv 24, 50 (2020). https://doi.org/10.1007/s11852-020-00768-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11852-020-00768-2

Keywords

Navigation