Skip to main content

Advertisement

Log in

Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer

  • Original Article
  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Abstract

Background

Cyclo-oxygenase-2 (COX-2) is up-regulated in malignant tumours rendering it an attractive target for cancer therapeutics. However, whether long-term antagonism maintains its initial efficacy on established tumours is unclear.

Methods

4T1 cells were injected into the mammary fat pad of BALB/c mice (n = 8). Once tumour deposits were established, animals were randomized into two equal groups to receive either a selective COX-2 inhibitor (SC-236) or a drug vehicle. Further animals similarly treated (n = 7) were studied in diuresis cages allowing urine capture and analysis by mass spectrometry to determine Prostaglandin F-1 levels (PGF-1). In addition, both wild-type receiving SC-236 and COX-2 knockout mice receiving either SC 236 or vehicle were subjected to the same studies to determine whether tumour-derived or host-derived (stromal) COX-2 was the critical element. Finally, BALB/c mice with 4T1 tumours (n = 7) were treated with a combination of COX-2 and lipoxygenase (LOX) inhibition to attenuate this escape phenomenon.

Results

While selective COX-2 inhibition initially retarded tumour growth, a rapid increase in tumour growth rate occurred later (day 9). This escape phenomenon correlated with an increase in urinary PGF-1 levels. An identical trend was also observed whether COX-2 knockout mice received SC-236 or not, suggesting that this effect is due to increased tumour-derived COX-2 production rather than recovery of host COX-2 functional capacity. Finally, dual inhibition of COX and LOX pathways attenuated this escape process.

Conclusion

The anti-neoplastic effects of selective COX-2 inhibition may not be sustained as tumours demonstrate an escape capacity. However, this phenomenon maybe attenuated by a combination of COX/LOX inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, Joensuu H, Isola J (2002) Prognostic significance of elevated cyclo-oxygenase-2 expression in breast cancer. Cancer Res 62(3):632–635

    PubMed  CAS  Google Scholar 

  2. Kokawa A, Kondo H, Gotoda T, Ono H, Saito D, Nakadaira S, Kosuge T, Yosida S (2001) Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer 91(2):333–338. doi:10.1002/1097-0142(20010115)91:2<333::AID-CNCR1006>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  3. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T (1995) Expression of cyclooxygenase-1 and 2 in human colorectal cancer. Cancer Res 55(17):3785–3789

    PubMed  CAS  Google Scholar 

  4. Juo YE, Rew JS, Seo YH, Choi SK, Kim YJ, Park CS, Kim SJ (2003) Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression in tumour angiogenesis in gastric cancer. J Clin Gastroenterol 37(1):28–33. doi:10.1097/00004836-200307000-00009

    Article  Google Scholar 

  5. Li W, Xu RJ, Zhang HH, Jiang LH (2006) Overexpression of cyclooxygenase-2 correlates with tumour angiogenesis in endometrial carcinoma. Int J Gynecol Cancer 16(4):1673–1678. doi:10.1111/j.1525-1438.2006.00408.x

    Article  PubMed  CAS  Google Scholar 

  6. Tjandrawinata RR, Dahiya R, Hughes-Fulford M (1997) Induction of cyclooxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer 75(8):1111–1118

    PubMed  CAS  Google Scholar 

  7. Pai R, Soreghan B, Szabo IL et al (2002) Prostaglandin E2 transactivates EGF receptor : a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8:289–293. doi:10.1038/nm0302-289

    Article  PubMed  CAS  Google Scholar 

  8. Tsujii M, Kawano S, Tsuji S, Sawoaka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716. doi:10.1016/S0092-8674(00)81433-6

    Article  PubMed  CAS  Google Scholar 

  9. Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K, Luo J, Zhu L, Lin Y, Huang M, Dohadwala M, Batra RK, Dubinett SM (2003) Tumour cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  10. Li G, Yang T, Yan J (2002) Cyclooxygenase-2 increased the angiogenic and metastatic potential of tumour cells. Biochem Biophys Res Commun 299:886–890. doi:10.1016/S0006-291X(02)02707-9

    Article  PubMed  CAS  Google Scholar 

  11. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94:3336–3340. doi:10.1073/pnas.94.7.3336

    Article  PubMed  CAS  Google Scholar 

  12. Romano M, Catalano A, Nutini M, D’Urbano E, Crescenzi C, Claria J, Libner R, Davi G, Procopio A (2001) 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of endothelial growth factor. FASEB J 15:2326–2336. doi:10.1096/fj.01-0150com

    Article  PubMed  CAS  Google Scholar 

  13. Cao Y, Pearmann AT, Zimmerman GA, McIntyre TM, Prescott SM (2000) Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 97:11280–11285. doi:10.1073/pnas.200367597

    Article  PubMed  CAS  Google Scholar 

  14. Connolly EM, Harmey JH, O’Grady T, Foley D, Roche-Nagle G, Kay E, Bouchier-Hayes DJ (2002) Cyclooxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. Br J Cancer 87:231–237. doi:10.1038/sj.bjc.6600462

    Article  PubMed  CAS  Google Scholar 

  15. Roche-Nagle G, Connolly EM, Eng M, Bouchier-Hayes DJ, Harmey JH (2004) Antimetastatic activity of a cyclooxygenase-2 inhibitor. Br J Cancer 91(2):359–365

    PubMed  CAS  Google Scholar 

  16. Kundu N, Fulton A (2002) Selective cyclooxygenase (cox)-1 or cox-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Res 62:2343–2346

    PubMed  CAS  Google Scholar 

  17. Hong SH, Avis I, Vos MD, Martinez A, Treston AM, Mulshine JL (1999) Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res 59:2223–2228

    PubMed  CAS  Google Scholar 

  18. Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ (1999) Enhancement of tumour response to radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst 91:1501–1504. doi:10.1093/jnci/91.17.1501

    Article  PubMed  CAS  Google Scholar 

  19. Tong WG, Ding XZ, Witt RC, Adrian TE (2002) Lipoxygenase inhibitors attenuate growth of human pancreatic xenografts and induce apoptosis through the mitochondrial pathway. Mol Cancer Ther 1:929–935

    PubMed  CAS  Google Scholar 

  20. Pidgeon GP, Harmey JH, Kay E, Da Costa M, Redmond HP, Bouchier-Hayes DJ (1999) The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br J Cancer 81(8):1311–1317. doi:10.1038/sj.bjc.6694369

    Article  PubMed  CAS  Google Scholar 

  21. Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumour model. Curr Protoc Immunol. Chap 20: Unit 20.2

  22. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr (1993) Aspirin use and the risk of fatal cancer. Cancer Res 53:1322–1327

    PubMed  CAS  Google Scholar 

  23. Chapple KS, Cartwright EJ, Howcroft G, Tisbury A, Bonifer C, Scott N, Windsor AC, Guillou PJ, Markham AF, Coletta PL, Hull MA (2000) Localization of cyclooxygenase-2 in human sporadic colorectal adenoma. Am J Pathol 156:545–553

    PubMed  CAS  Google Scholar 

  24. Shattuck-Brandt RL, Varilet GW, Radhika A, Yang F, Washington MK, DuBois RN (2000) Cyclooxygenase-2 expression is increased in the subepithelial myofibroblasts of colon and caecal carcinoma from IL-10 (−/−) mice. Gastroenterology 118:337–345. doi:10.1016/S0016-5085(00)70216-2

    Article  PubMed  CAS  Google Scholar 

  25. Kinzler KW, Vogelstein B (1998) Landscaping the cancer terrain. Science 280:1036–1037. doi:10.1126/science.280.5366.1036

    Article  PubMed  CAS  Google Scholar 

  26. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN (2000) Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105(11):1589–1594. doi:10.1172/JCI9621

    Article  PubMed  CAS  Google Scholar 

  27. Hanahan D, Folkmann J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumourigenesis. Cell 86:353–364. doi:10.1016/S0092-8674(00)80108-7

    Article  PubMed  CAS  Google Scholar 

  28. Abou-Issa HM, Alshafie GA, Seibert K, Koki AT, Masferrer JL, Harris JE (2001) Dose response effects of the COX-2 inhibitor, celecoxib, on the chemoprevention of mammary carcinogenesis. Anticancer Res 21:3425–3432

    PubMed  CAS  Google Scholar 

  29. Jang TJ, Jung HG, Jung KH, O Min Ku (2002) Chemopreventive effect of celecoxib and expression of cyclooxygense-1 and cyclooygenase-2 on chemically induced rat tumour models. Int J Exp Pathol 83:173–182. doi:10.1046/j.1365-2613.2002.00228.x

    Article  PubMed  CAS  Google Scholar 

  30. Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, Beauchamp RD, DuBois RN (1997) Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 99:2254–2259. doi:10.1172/JCI119400

    Article  PubMed  CAS  Google Scholar 

  31. Alshafie GA, Abou-Issa HM, Seibert K, Harris RE (2000) Chemotherapeutic evaluation of celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumour model. Oncol Rep 7:1377–1381

    PubMed  CAS  Google Scholar 

  32. Reddy BS, Maruyama H, Kelloff G (1987) Dose related inhibition of colon carcinogenesis by dietary piroxicam; a nonsteroidal anti-inflammatory drug, during different stages of rat colon tumour development. Cancer Res 47:5340–5346

    PubMed  CAS  Google Scholar 

  33. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trasaskos JM, Evans JF, Taketo MM (1996) Suppression of intestinal polyposis in APC delta 716 knockout mice by inhibition of cyclooxygenase-2 (COX-2). Cell 87:803–809. doi:10.1016/S0092-8674(00)81988-1

    Article  PubMed  CAS  Google Scholar 

  34. Lagakos SW (2006) Time-to-event analyses for long-term treatments—the APPROVe trial. N Engl J Med 355(2):113–117. doi:10.1056/NEJMp068137

    Article  PubMed  CAS  Google Scholar 

  35. Kargman S, Vickers PJ, Evan JF (1992) A23187 induces translocation of 5-lipoxygenase in osteosarcoma cells. J Cell Biol 119:1701–1709. doi:10.1083/jcb.119.6.1701

    Article  PubMed  CAS  Google Scholar 

  36. Baodo RJ, Pardridge WM, Vinters HV, Black KL (1992) Differential expression of arachidonate 5-lipoxygenase transcripts in human brain tumours: evidence for the expression of a multitranscript family. Proc Natl Acad Sci USA 89:9044–9048. doi:10.1073/pnas.89.19.9044

    Article  Google Scholar 

  37. Henning P, Ding XZ, Tong WG, Schneider MB, Standop J, Freiss H, Buchler MW, Pour PM, Adrian TE (2002) 5-Lipoxygenase and leukotrienes B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol 161:421–428

    Google Scholar 

  38. Gupta S, Srivastara M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar N (2001) Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91:737–743. doi:10.1002/1097-0142(20010215)91:4<737::AID-CNCR1059>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  39. Hoper MM, Voelkel NF, Bates TO, Allard JD, Horan M, Sheppard D, Tuder RM (1997) Prostaglandins induce vascular endothelial growth factor in a human monocyte cell line and rat lungs via Camp. Am J Respir Cell Mol Biol 17:748–756

    PubMed  CAS  Google Scholar 

  40. Liu XH, Kirschenbaum A, Lu M, Yao S, Dosoretz A, Holland JF, Levine AC (2002) Prostaglandin E2 induces hypoxia inducible factor-1-alpha stabilization and nuclear localization in a prostate cancer cell line. J Biol Chem 277:50081–50086. doi:10.1074/jbc.M201095200

    Article  PubMed  CAS  Google Scholar 

  41. Avis I, Hong SH, Martinez A, Moody T, Choi YH, Trepel J, Das R, Jett M, Mulshine JL (2001) Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J 15(11):2007–2009

    PubMed  CAS  Google Scholar 

  42. Tsukada T, Nakashima K, Shirakawa S (1986) Arachidonate 5-lipoxygenase inhibitors show potent antiproliferative effects on human leukaemia cell lines. Biochem Biophys Res Commun 140:832–836. doi:10.1016/0006-291X(86)90709-6

    Article  PubMed  CAS  Google Scholar 

  43. Solomon SD, McMurray JJ, Pfeffer MA et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352(11):1071–1080. doi:10.1056/NEJMoa050405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Fitzgerald for the provision of the COX-2 knock-out mice. This research was supported by the Royal College of Surgeons in Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, M., Cahill, R.A., Roche-Nagle, G. et al. Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Ir J Med Sci 178, 201–208 (2009). https://doi.org/10.1007/s11845-009-0335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-009-0335-3

Keywords

Navigation